Herein we describe simple methods for the preparation of vesicles, the encapsulation of transcription and translation machinery, and the monitoring of protein production. The resulting cell-free systems can be used as a starting point from which to build increasingly complex cellular mimics.
As interest shifts from individual molecules to systems of molecules, an increasing number of laboratories have sought to build from the bottom up cellular mimics that better represent the complexity of cellular life. To date there are a number of paths that could be taken to build compartmentalized cellular mimics, including the exploitation of water-in-oil emulsions, microfluidic devices, and vesicles. Each of the available options has specific advantages and disadvantages. For example, water-in-oil emulsions give high encapsulation efficiency but do not mimic well the permeability barrier of living cells. The primary advantage of the methods described herein is that they are all easy and cheap to implement. Transcription-translation machinery is encapsulated inside of phospholipid vesicles through a process that exploits common instrumentation, such as a centrifugal evaporator and an extruder. Reactions are monitored by fluorescence spectroscopy. The protocols can be adapted for recombinant protein expression, the construction of cellular mimics, the exploration of the minimum requirements for cellular life, or the assembly of genetic circuitry.
Cell-free, in vitro transcription-translation reactions and the generation of vesicles from synthetic lipids are nothing new. However, combining the two into a cellular mimic is significantly more challenging1-6. E. coli cell extracts with or without T7 RNA polymerase can be used as a source of transcription-translation machinery7,8. Cell extracts benefit from the presence of additional cellular components that can facilitate protein expression and folding. Alternatively, a mix of individually purified RNA and protein molecules, i.e. the PURE system9, can be used to mediate intravesicular protein synthesis4,10-14. The PURE system allows for the construction of fully defined cellular mimics and does not suffer from the nuclease activity found in cell extracts. Practically, this means that much less DNA template is required, thereby facilitating processes with low encapsulation efficiency11. Although less frequently used, cellular mimics can be built with cell extracts derived from eukaryotic cells15. Thus far, genetically encoded encapsulated cascades and cellular mimics that sense the environment have been reported16-18.
The simplest way to monitor transcription-translation reactions is to measure the fluorescence or luminescence of genetically encoded elements. Typically, firefly luciferase19 or GFP are used, although in vitro reactions are frequently measured by radiolabeling. Fluorescence detection additionally allows for the monitoring of populations of vesicles20,21 through cytometry based methods, thereby offering some insight into the stochastic nature of biological-like processes. These monitoring methods have been used to define a small set of design rules and a library of parts from which to build from, including a collection of fluorescent proteins that are compatible with in vitro transcription-translation22, the influence of genetic organization on expression22, the activity of sigma factors16, and the efficiency of transcriptional terminators23. Nevertheless, there remains much that needs to be done to increase the capability of building predictable in vitro, genetically encoded devices.
There are many methods available to make vesicles. The most common methods depend upon the generation of a thin lipid film on a glass surface followed by resuspension in aqueous solution24. If the aqueous solution contains transcription-translation machinery, for example, then a fraction of the vesicles formed would contain the necessary components for protein production. However, the encapsulation efficiency of such methods is low, meaning that only a small percentage of vesicles are active. Many of the alternative methods characterized by much higher encapsulation efficiency exploit the conversion of water-in-oil emulsion droplets to vesicles. While it is likely that such methods will be commonplace in the future, currently these methods suffer from the need of specialized equipment and give vesicles with altered membrane compositions25. A distinct advantage of water-in-oil to vesicle methods is the potential to control membrane lamellarity. The method described herein is based on the thin lipid film protocol described by the Yomo laboratory11 with slight modifications including an additional homogenization step. This method is easy, cheap, and gives robust vesicles well suited for the encapsulation of transcription-translation machinery.
1. Preparing the DNA Template
2. Preparing the Thin Lipid Film
3. Lipid Resuspension and Vesicle Homogenization
4. Vesicle Extrusion and Lyophilization
5. Encapsulating Transcription-translation Machinery
6. Microscopy
Fluorescence microscopy reveals that fluorescence is only observed inside of the vesicles, because extravesicular material is enzymatically degraded (Figure 3). For the expression of mVenus, intravesicular fluorescence begins to be observed after 1.5 hr at 37 °C and reaches maximum fluorescence intensity within 6 hr. The optimal temperature and incubation time can vary depending upon the specific constructs used. For example, different fluorescent proteins mature quite differently in a temperature dependent manner. In other words, the observation of protein production is not solely dependent upon protein synthesis and folding but also on chromophore formation. Overall protein synthesis can be increased by incorporating membrane protein pores to allow for an influx of depleted components necessary for transcription and translation27.
It is recommended to carry out an analogous transcription-translation reaction in the absence of vesicles to ensure that the exploited genetic construct is functional. This control reaction is more easily monitored by fluorescence spectroscopy rather than microscopy. Figure 4 shows an in vitro transcription-translation reaction of a construct encoding mVenus. Unencapsulated reactions give much higher total fluorescence intensities than similar intravesicular reactions. This is due to encapsulation efficiency and because the total intravesicular volume is much less than the extravesicular volume (i.e. a dilution effect).
Figure 1. The rotary evaporator and vacuum pump. Click here to view larger image.
Figure 2. The housing and parts of the extruder are shown separately. From left to right, syringe, retainer nut, teflon bearing, internal membrane supports with black O-rings facing one another, extruder outer casing, and second syringe. Click here to view larger image.
Figure 3. Fluorescence images of mVenus protein production in liposomes. A and C: Bright field images of multilamellar vesicles after 1.5 hr and 2.5 hr. B and D: The production of mVenus is visualized by fluorescence (colored green) after 1.5 and 2.5 hr, respectively. Scale bar is 20 μm. Click here to view larger image.
Figure 4. In vitro control reaction of nonencapsulated in vitro transcription and translation of mVenus. Fluorescence intensity was measured every 5 min over 4 hr. The data were acquired with a Real-Time PCR instrument. Click here to view larger image.
Although cell-free synthetic biology is still in its infancy, advances have laid a foundation from which increasingly complex cell-like systems can be made. The reconstitution of transcription-translation machinery from fully defined components9 inside of vesicles28 was particularly significant in facilitating later efforts in constructing environmentally responsive artificial cells17,18. Similarly, artificial cell studies have been used to probe evolutionary processes4,29,30, the mechanistic details of RNA and protein synthesis22,31, the influences of metabolic load32,33, and the assembly of viral particles34. Importantly, enough knowledge now exists that basic cellular function can be reconstituted inside of vesicles in the laboratory following these previous reports and the protocols described herein.
In addition to being easy, the described encapsulation procedure has several benefits. For example, many empty, lyophilized vesicle aliquots can be made in advance and stored at -20 °C for later use. The protocol does not subject biological molecules to organic solvents, drastic temperature changes, or long periods of dialysis. We expect that the gentleness of the procedure will facilitate the incorporation of additional components as needed. We also have not observed adverse effects to changing the lipid composition of the membrane on encapsulation or transcription-translation efficiency. Therefore, lipids more amenable to the incorporation of membrane proteins, specific morphologies, or visualization could conceivably be exploited.
The major limitation of the described method is that the resulting vesicles are not homogenous in size or lamellarity. For many applications, these difficulties do not interfere with the interpretation of data. However, if needed, additional steps can be incorporated to narrow the size distribution and decrease the layers of membranes, such as further rounds of extrusion after encapsulation, freeze-thawing, or dialysis35. Undoubtedly better methods that circumvent these and other problems will be developed. Until then, we find the protocol described here to be well suited for the construction of cellular mimics.
The authors have nothing to disclose.
The authors acknowledge the Armenise-Harvard Foundation, the Marie-Curie Trentino COFUND (ACS), the Autonomous Province of Trento (Ecomm), and CIBIO for funding.
Quick Spin Mini-prep kit | Qiagen | 27104 | |
Spectrometer | NanoDrop 1000 | NDB767ND | |
POPC | Avanti Polar Lipids | 770557 | MW 760 g/mol Transition Temp -2 °C CAS# 26853-31-6 |
Ethanol | Sigma Aldrich | 459836 | Anhydrous, >99.5% |
Phenol-choloroform-isoamyl alcohol 25:24:1, for molecular biology use | Sigma Aldrich | P3803-100mL | Saturated with 10 mM Tris, pH 8.0, 1 mM EDTA |
Chloroform | Biotech Grade Fluka | 496189-1L | Contain ethanol at 0.5-1.0% v/v as stabilizer |
Brown amber glass bottles | VWR | 89043-518 | 55X 48 mm |
Rotary evaporator | Buchi Rotovapor R-210/Sigma | Z563846EU-1EA | With jack and water bath, 29/32 joint 240 V |
Analog vortex mixer | VWR | 945300 | Speed 1,000-3,200 rpm |
Homogenizer | IKA T10 Basic Ultra-Turbax | 3420000 | |
Mini-extruder | Avanti Polar Lipids | 610020 | |
Extruder filters | Whatman | 610014 | drain disc 10 mm |
Extruder polycarbonate membrane 400 nm | Whatman | 61007 | nuclepore polycarbonate |
Speed vacuum | Labconco | 7970011 | Centritrap DNA concentrator |
PURExpress kit | New England Biolabs | NRM #E6800S | |
RNAse inhibitor (40,000 U/ml) | New England Biolabs | #M0307S | |
Proteinase K (20.2 mg/ml) | Fermentas | #EO0491 | |
Microscope | Zeiss Observer Z1with a AxioCam MRm camera | ||
RealTime | CFX96 Real time PCR Detection System (Biorad) | ||
Silicon press to seal -Molecular Probe | Life Technologies | P18174 | Resistant from -25-30 °C |
Siliconized glass circle cover slides | Hampton Research | HR3-231 | Diameter= 22 mm |
ImageJ | NIH |