We describe a method to label protein on the surface of living neurons using a specific polyclonal antibody to extracellular epitopes. Protein bound by the antibody on the cell surface and subsequently internalized via endocytosis can be distinguished from protein remaining on, or trafficked to, the surface during the incubation.
In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking (“antibody feeding”) to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available.
In establishing the function of newly identified proteins, investigation of the subcellular localization and trafficking of the protein in question can provide important clues about the likely role/s of the protein1,2. Bioinformatic analysis of the transcriptome of the developing neocortex3 provided us with a list of genes exhibiting altered expression during mouse brain corticogenesis. We then adopted a gene knockout approach to ascertain that the protein encoded by one of these genes, sez6, has a key role in neuron development. We observed that the Seizure-related gene 6, or Sez6, protein is located in developing dendrites and is also present in dendritic spines, specialized structures on dendrites that receive and integrate excitatory signals. Furthermore, when this protein is lacking, dendrites and excitatory synapses fail to form correctly4. The probable dominant isoform of the protein has features of a transmembrane receptor although, when the subcellular distribution of immunolabeled protein was examined by confocal microscopy or by immunoelectron microscopy most, if not all, of the signal appeared associated with small vesicles in the somatodendritic compartment with little, or no, protein labeled on the plasma membrane at the cell surface.
In order to definitively show that this putative receptor with a predicted large extracellular domain is trafficked to the plasma membrane, we adopted a live-cell approach using the antiserum we had generated to an extracellular portion of the protein to label protein on the cell surface. By combining this “antibody feeding” approach with two applications of differentially-labeled secondary antibody separated by an extensive blocking step and a permeabilization step, we were able to identify two different pools of protein distinguished by binding to fluorescently-labeled secondary antibodies bearing different fluorescent tags. Thus, we were able to distinguish protein that had been internalized by endocytosis during the antibody incubation step from protein that either remained on the cell surface or was trafficked to the surface during this period. Using this method, we established that the protein of interest is trafficked to and from the cell surface in neurons. Therefore, this relatively fast and simple technique proved more informative than traditional immunocytochemistry methods or pre-embedding immunogold electron microscopy, despite the fact that we used the same rabbit polyclonal antiserum for all these techniques. This technique is generally applicable to any transmembrane protein provided a good antibody recognizing extracellular domain epitopes is available. The technique has been used previously to study receptor trafficking of the glutamate receptor GluR1 subunit5.
1. Dissociated Hippocampal Neuron Culture
2. Antibody Incubation with Live Neurons
3. Secondary Antibody Application to Fixed, Unpermeabilized Cells
4. Blocking with Excess Unlabeled 2° Antibody
5. Permeabilization and Application of the Second Fluorescently Conjugated 2° Antibody
6. Mounting and Imaging
The dual-color fluorescent immunostaining technique presented here is useful for labeling extracellular domains of transmembrane proteins in living cells (shown schematically in Figure 1). During the incubation period, the immunoglobulins bind accessible epitopes and a proportion of the population of protein molecules, together with bound antibody, is endocytosed. In addition, newly synthesized protein may reach the cell surface via forward trafficking and recycled protein molecules may be returned to the plasma membrane10.
This method has been optimized for the detection of two distinct protein pools, cell-surface and internalized, using the same primary antibody specific for the protein under study. By applying one fluorescently tagged secondary antibody to fixed cells prior to permeabilization, protein localized on the cell-surface at the time of fixation can be detected. The incorporation of a thorough blocking step to prohibit any binding of remaining protein-primary antibody surface complexes that have not been bound by the initial secondary antibody allows the subsequent detection (with secondary antibody conjugated to a different fluorophore) of protein-antibody complexes that were endocytosed during the incubation period (Figure 1).
Representative images of the dual-color labeling obtained with this method are shown in Figure 2. The incorporation of a blocking step of long duration (overnight incubation) with the relevant unlabeled secondary antibody, aimed at saturation binding of any remaining surface protein/primary antibody complexes, proved to be crucial to the success of this approach. The efficiency of this blocking step with unlabeled secondary antibody prior to permeabilization is demonstrated by the absence of double-stained puncta (with the exception of the small cell marked with an arrowhead which exhibits characteristic morphology of a dying cell, appearing rounded-up and condensed; Figure 2). Optimization of the conditions and combinations for the two labeled secondary antibodies may be necessary and the no-primary antibody condition is an important control. While working up this protocol, we found that it was not possible to completely block nonspecific binding of certain labeled secondary antibodies, particularly with blocking periods shorter than the overnight incubation described here.
Examples of single-color labeling of internalized protein in cultured neurons (Figure 3) highlight the characteristic punctate staining pattern of protein in the endosomal compartment10,11. To confirm that protein internalized during the antibody-feeding incubation and displaying punctate staining was localized in endosomes, neurons expressing an early/recycling endosome marker (transferrin-mCherry; TfR-mCh)12 were immunostained after permeabilization. The extensive overlap of the punctate staining with TfR-mCh expression is shown in Figure 4.
Figure 1. Schematic showing the dual-color labeling of cell-surface and internalized proteins after antibody feeding of live cultured neurons. Click here to view larger image.
Figure 2. Labeling of cell-surface protein (cyan; EXT) and internalized protein (green; INT) on a cultured rat hippocampal neuron together with the merged image (MERGE). Double staining (arrowhead) was only observed in a cell that was apparently unhealthy. Scale bar = 10 μm. Click here to view larger image.
Figure 3. Higher power view of single-color (internalized protein) immunostaining showing the typical punctate pattern of endocytosed proteins. Scale bar = 10 μm. Click here to view larger image.
Figure 4. A region of the dendritic arbor of a neuron expressing a fluorescent marker for the recycling endosome (an expression construct for a transferrin receptor-mCherry fusion protein, TfR-mCh, was transfected using Lipofectamine 2000 [Invitrogen] according to the manufacturer’s instructions). The day after transfection, neurons were stained (after permeabilization) for endocytosed protein (candidate receptor), showing overlap with the recycling endosome compartment. Scale bar = 20 μm. Click here to view larger image.
The technique described here is complementary to that of cell-surface biotinylation (reviewed by Arancibia-Càrcamo et al.)12 and it is the method of choice for preserving information about the subcellular localization of the internalized protein, provided a suitable primary antibody to an extracellular epitope is available. In addition, quantitation of protein trafficking/internalization over time can be performed (by fixing coverslips at different times throughout the live cell incubation with primary antibody) without the need to prepare protein extracts.
Staining intensity or number and size of puncta in regions of interest (for example, the apical regions of pyramidal neuronal somata or the proximal apical dendrite at a set distance from the soma) in confocal images can be measured and compared under different conditions (for example, stimulated versus basal levels8,9). Internalized receptor signal intensity may then be normalized to that of surface receptors. Alternatively, the technique can be adapted for the quantitation of receptor recycling back to the cell surface through the inclusion of a stripping step to remove remaining antibody from the cell surface followed by an incubation to allow previously internalized, antibody-bound protein to return to the surface13.
Using this method, we were able to confirm that Sez6, the putative membrane receptor of interest, reaches and is localized on the cell-surface in neurons. Thus, this technique succeeded where more commonly-used immunofluorescence or immunoelectron microscopy (pre-embedding immunogold) protocols had previously failed. Despite predictions based on the primary amino acid sequence of this protein, definitive evidence of its presence at the cell-surface had been difficult to obtain. The protein we detected on the surface of nonpermeabilized cells was readily visible as distinct puncta possessing similar characteristics to those present intracellularly in the somatodendritic and axonal compartments. A possible explanation for this surface punctate staining is that the binding of antibody might stimulate internalization and, therefore, enable the detection of clustered cargo in nascent clathrin coated pits14. The overlap of the staining pattern of internalized protein puncta with that of the early/recycling endosome reporter TfR-mCherry lends indirect support to this concept. Additionally, we have evidence (unpublished) that a proportion of the protein is present in lipid rafts which also accounts for its clustered distribution on the surface.
While we have focused our attention on neurons in the current protocol, we observed evidence of uptake of immunoreactive protein (likely to represent the secreted and/or cleaved versions of the protein) in glial cells morphologically resembling astrocytes. This finding is of interest, firstly because it indicates that the method may be adapted for the study of the paracrine effects of secreted factors (for example, in cocultures) and, secondly, because it implies that the method will be applicable to other cell types.
The authors have nothing to disclose.
The authors thank Teele Palumaa for assistance with the figures. Funded by Project Grant 1008046 from the National Health and Medical Research Council, Australia.
PBS with Ca and Mg | Invitrogen | 14040182 | |
Neurobasal medium | Invitrogen | 21103-049 | |
B27 supplement | Invitrogen | 17504-044 | |
L-glutamine | Invitrogen | 25030-081 | |
Papain Dissociation System | Worthington Biochemical Corporation | PDS | |
Bovine Serum Albumin | Sigma Aldrich Australia | A9418 | |
Hank's balanced salt solution without calcium, magnesium, phenol red | Invitrogen (Gibco) | 14175-079 | |
Poly-D-Lysine | Sigma Aldrich Australia | P0899 | |
Natural mouse laminin | Invitrogen | 23017-015 | Thaw on ice prior to making aliquots |
Fetal bovine serum HyClone | Thermo Fisher | ||
fluorodeoxyuridine | Sigma Aldrich Australia | F0503 | |
uridine | Sigma Aldrich Australia | U3003 | |
18 mm round glass coverslips | Menzel Gläser | CB00180RA1 | |
VECTASHIELD aqueous mounting medium | Vector Laboratories | H1400 | |
Donkey anti-rabbit Dylight 649 | Jackson ImmunoResearch Laboratories | 711-495-152 | |
AffiniPure Fab fragment Goat anti-Rabbit 1gG (H+L) | Jackson ImmunoResearch Laboratories | 111-007-003 | |
Paraformaldehyde | Sigma Aldrich Australia | P6148 | TOXIC – handle in fume hood |
Triton-X-100 | Sigma Aldrich Australia | T8787 | |
Alexafluor 488-conjugated donkey anti-rabbit 2° antibody | Invitrogen – Molecular Probes | A21206 |