The giant ciliate Stentor coeruleus is a classical system for studying regeneration and wound healing in single cells. By imaging Stentor cells simultaneously at low and high magnification it is possible to measure cytoplasmic flows before, during, and after wounding.
Although wound-healing is often addressed at the level of whole tissues, in many cases individual cells are able to heal wounds within themselves, repairing broken cell membrane before the cellular contents leak out. The giant unicellular organism Stentor coeruleus, in which cells can be more than one millimeter in size, have been a classical model organism for studying wound healing in single cells. Stentor cells can be cut in half without loss of viability, and can even be cut and grafted together. But this high tolerance to cutting raises the question of why the cytoplasm does not simply flow out from the size of the cut. Here we present a method for cutting Stentor cells while simultaneously imaging the movement of cytoplasm in the vicinity of the cut at high spatial and temporal resolution. The key to our method is to use a "double decker" microscope configuration in which the surgery is performed under a dissecting microscope focused on a chamber that is simultaneously viewed from below at high resolution using an inverted microscope with a high NA lens. This setup allows a high level of control over the surgical procedure while still permitting high resolution tracking of cytoplasm.
Regeneration and wound healing are important biological processes whose mechanisms remain areas of active investigation. Indeed, the ability to heal wounds and regenerate damaged parts is one of the features that sets living things apart from inanimate objects. Normally, regeneration is thought to be mediated by differentiation of stem cells into various cell types needed to rebuild a damaged or severed animal part, while wound healing is viewed in terms of new cells invading a wound to rebuild an intact epithelium. Thus both processes appear to be mediated by collectives of individual cells, and seem therefore to be quintessentially multicellular processes. It is therefore potentially surprising that individual cells are, in some cases, able to repair wounds and regenerate lost components1. Wound healing within single cells can involve multiple pathways including actin-myosin purse string contraction around the wound and membrane patching by rapid fusion of exocytotic vesicles1-3. Although many cell types are capable of some degree of wound healing4-6, perhaps the most dramatic example is the giant ciliate Stentor coeruelus7, shown in Figure 1. Individual Stentor cells are 1 mm long, and are covered with rows of cilia. Stentor cells are cone-shaped with an oral apparatus, consisting of thousands of cilia, at one end, and a narrow hold-fast structure at the other end. Stentor was a classical model organism for studying regeneration because if any part of the cell was cut off, it could regenerate7. For example, in a classic series of experiments, Thomas Hunt Morgan8 showed that a Stentor cell could be cut in half and each half would regenerate a normally proportioned cell in a matter of hours8. The molecular pathways responsible for regeneration in Stentor remain completely unknown.
The ability of Stentor cells to serve as a regeneration model system relies on the amazing ability of these cells to heal themselves after being cut. Why doesn't the cytoplasm of a Stentor cell leak out when the cell is cut? Wound healing is not due to immediate contraction of the cell cortex, because it is possible to take two Stentor cells, cut them, and then join the two cut cells together in various configurations7. During such grafting experiments, the cytoplasm of the two cells must remain exposed since it fuses when the cells are pushed together. Somehow, the cytoplasm is exposed enough to the surrounding media to allow grafting, but yet it does not flow out of the cell. Is the cytoplasm of Stentor sufficiently elastic that it simply cannot flow out even when a large hole is made in the plasma membrane? Do cells increase the viscosity of cytoplasm locally around a wound to prevent the cytoplasm from flowing out? Cytoplasm is a highly complex active material9-11, and the Stentor wound healing response represents a unique opportunity to study cytoplasmic flows and mechanics during single cell wound healing. However, the use of surgical methods to induce wounding in Stentor poses a technical challenge. In order to cut a 1 mm long cell using glass needles, the conventional surgical paradigm, it is necessary to operate at low magnification with long working distance. Under these imaging conditions, it is not possible to track the flow of cytoplasm, and all one can determine is whether the cytoplasm remains inside the cell or not. The real question we would like to ask is how the movement and viscosity of cytoplasm may change during cutting and healing. This requires high resolution imaging. Here we present an adaptation of Tartar's protocol for cutting Stentor7 that permits the cutting to be done under lower magnification optics to see the whole cell while simultaneously observing cytoplasm flow at high resolution, allowing this system to be used as a platform for exploring the mechanisms of single-cell wound healing.
The most important application of this method will be to use it to determine the molecular pathways that regulate cytoplasmic flow during wound healing in Stentor. A wide range of chemical inhibitors are available that target motor proteins as well as components of the cytoskeleton. Inhibitors of calcium signaling would also be likely candidates. It would also be of interest to remove or reduce the pigment granules (extrusomes) containing the blue pigment Stentorin, whose release from the cell is triggered under stress, and ask how the exocytotic release of Stentorin may affect flow of nearby cytoplasm. The pigment can be depleted using a simple bleaching treatment15 which could be done just prior to cutting. There does not appear to be any simple way to perform the wound healing assay in a parallel fashion since the cells need to be cut and imaged one at a time. Thus using a single microscope, it would be possible to operate on and measure cells at a rate of roughly 1 per 0.5 hr, so that during a single day of work it should be possible to obtain enough data points for a single compound to determine if it has a statistically significant effect on the process. While the method is thus not in any sense high throughput, it will be absolutely feasible to screen though a selected set of candidate compounds specific for a few carefully chosen target pathways.
A major limitation of the current approach is the relatively crude method for assembling the double-decker microscope. Assuming that the inverted microscope used for imaging is a general use instrument that other workers need to use for other purposes, an important consideration is the ease with which the apparatus can be disassembled and reassembled. While the present method using lab tape is indeed rapid and easily disassembled, it does require careful alignment by the user during assembly each time. An important modification would therefore be to construct a customized removable holder with slots for the eyepiece head of the inverted scope and the body of the dissecting scope. This should be easy to fabricate using modern 3D printer technology.
A second limitation of the approach is the reliance on DIC imaging of intracellular organelles as markers of flow. Because the identity of these organelles observed in the microscope is not currently known, it is not possible to know their size or potential interactions with other cellular components. It might therefore be advantageous to inject extrinsic tracers such as fluorescent beads and use them to track the flow. However this would require an extra step – microinjection – before the experiment could be done, thus further slowing the assay.
The final key limitation is the reliance on a single image plane for data acquisition. The primary importance of this assay is that it goes beyond simply asking whether a wound heals or not, and allows detailed analysis of the flow pattern to be obtained. In this regard, it will be extremely important to extend the imaging to three dimensional imaging. The current method images a single focal plane and thus when the PIV analysis is performed, the result is a slice through the full three dimensional flow field. This is informative but incomplete. By acquiring 3D images at each time step, it should be possible to obtain a fully three dimensional flow field. This will be particularly critical for observing exactly how the cytoplasm moves in the immediate vicinity of the wound site.
The authors have nothing to disclose.
This work was supported by NIH grant R01 GM090305 (WFM). The procedure described here was developed at the Physiology Course of the Marine Biological Laboratory during the summer of 2012, and we thank the students, instructors, and course directors for many helpful and stimulating discussions.
Material Name | Company | Catalogue Number | |
---|---|---|---|
Stentor coeruleus live culture | Carolina Biological | 131598 | |
Methyl Cellulose, 1,500 cP | Sigma | M0387 |
EQUIPMENT:
Material Name | Company | Catalogue Number | |
---|---|---|---|
Soft glass stirring rod 5 in long | Fisher Scientific | 11-380A | |
Culture Dish 4.5 in 250 ml glass | Carolina Biological | 741004 | |
IX81 inverted microscope | Olympus | ||
Axiovert 200M inverted microscope | Zeiss | ||
Stemi 2000 Stereo Microscope | Zeiss | ||
Evolve 512 x 512 EMCCD camera | Photometrics | ||
Plan Apo 20X objective | Olympus | UPLSAPO |