Proteínas de unión de hielo (IBP), también conocidas como proteínas anticongelantes, inhibir el crecimiento del hielo y son un aditivo prometedor para su uso en la crioconservación de tejidos. La principal herramienta utilizada para investigar los IBP es el osmómetro nanolitros. Hemos desarrollado un hogar diseñado etapa de enfriamiento montado en un microscopio óptico y se controla utilizando una rutina de costumbre-construido LabVIEW. El osmómetro nanoliter descrito aquí manipulado la temperatura de la muestra de una manera ultra-sensible.
Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish1, plants2, 3, arthropods4, 5, fungi6, and bacteria7. IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested8-10, see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears11, and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments.
We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously9, 10, contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details.
To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)12. This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies’ group (Queens University)10. We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs5, 13. In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations14, 15. We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber13. The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere16.
The Cold Stage System
The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA).
Este trabajo demuestra el funcionamiento de un osmómetro de nanolitros controlado por computadora que permite mediciones precisas de la actividad TH con control de temperatura extraordinaria. En cualquier sistema sensible a la temperatura, gradientes de temperatura no deseados deben ser evitados. Para evitar gradientes de temperatura en el aparato que aquí se presenta, la gota de solución de ensayo debe ser posicionado en el centro de un agujero en la etapa de refrigeración de cobre del disco (paso 2,7). Adicionalmente, el monocristal debe estar en el centro de la gotita en lugar de cerca de los bordes (en la mayoría de los casos, esto sucederá de forma espontánea). La dependencia del tiempo descrito indica que la velocidad de enfriamiento puede influir en las lecturas de TH. Por lo tanto, se sugiere incluir un informe del tiempo durante el cual el cristal fue expuesta a la solución antes de la refrigeración, así como la velocidad de enfriamiento. Normalmente nos esperó 10 min antes de la rampa descendente de la temperatura a 0,01 ° C pasos cada sec 4.
Los co-LabVIEW controladosetapa Oling fue adaptado para uso con un microscopio invertido en el que los dispositivos de microfluidos podría ser térmicamente manipulado. Este sistema facilita la realización de experimentos de intercambio de soluciones que implican cristales de hielo y IBPS etiquetados con eGFP 9, 10, 16. El sistema LabVIEW controlado puede ser adaptado a una etapa Clifton conectando el controlador de temperatura 3040 a través de un circuito de adaptación designado eléctrica. Tal sistema es operado en el laboratorio Davies 17. El software LabVIEW y el diseño de la adaptación designado circuito eléctrico para la etapa de Clifton están disponibles bajo petición.
En conclusión, se describe un osmómetro de nanolitros que facilita el control sensible y manipulación de la temperatura y la tasa de aumento de la temperatura y disminución (con 0,002 ° C sensibilidad), coordinado con un interfaz de vídeo a través de una rutina de LabVIEW para análisis en tiempo real. Este sistema puede realizar reproducibles de velocidad controlada experimentos que son Important para investigar la cinética de la interacción IBP con hielo. Tales experimentos pueden abordar varios largamente debatido cuestiones relacionadas con el mecanismo de acción de los IBP.
The authors have nothing to disclose.
Esta investigación fue apoyada por la ISF, NSF, y ERC. Queremos reconocer la ayuda técnica con la etapa de temperaturas de Randy Milford, Michael Koren, Shafer Doug y Jeremy Dennison. Asistencia en el desarrollo de software fue proporcionado por O Chen, Xu Di, Sannareddy Rajesh, y Bhattachary Sumit. Nos gustaría agradecer a nuestros colaboradores el profesor Peter L. Davies y el Dr. Laurie A. Graham para la proteína de fusión IBP y útiles debates. También queremos agradecer a los miembros del laboratorio del Dr. Maya Bar-Dolev, Qin Yangzhong, Dr. Yeliz Celik, el Dr. Natalya Pertaya, Mizrahy Ortal, y Guy Shlomit por su retroalimentación de los usuarios.
Name | Company | Catalog Number/model | コメント |
Immersion oil Type B | Cargille Laboratories | 16484 | |
Drierite | W.A. Hammond Drierite | 043063 2270g | |
Micro 90 cleaning solution | Cole-Parmer | EW-18100-11 | |
Capillary puller | Narishige | PB-7 | |
Glass capillary tubes | Brand GNBH | 7493 21 | 75 mm long, 1.15 diameter |
Temperature controller | Newport, Irvine, California, United States | Model 3040 | Model 3040 |
Light microscope | Olympus | Model BH2 | |
10x objective | Olympus | S Plan 10, 0.3, 160/0.17 | |
50x objective | Nikon | CF plan, 50X/0.55 EPI ELWD | |
CCD Camera | Provideo | CVC-140 | |
Tygon tubes | Saint-Gobain, Paris, France | Tygon Formulation S-50-HL Tubing | |
Glass syringe (2 ml) | Poulten-Graf, Wertheim, Germany | 7 10227 | |
GPIB-PCI card | National instruments, Austin, Texas, USA | 778032-01 | |
Video frame grabber IMAQ-PCI-1407 | National instruments, Austin, Texas, USA | 322156B-01 | |
LabVIEW System Design Software | National instruments, Austin, Texas, USA | Version 8 | |
DiVx Author software | DiVx LLC, San Diego, CA, USA |