A method to load subventricular zone (SVZ) cells with calcium indicator dyes for recording calcium activity is described. The postnatal SVZ contains tightly packed cells including neural progenitor cells and neuroblasts. Rather than using bath loading we injected the dye by pressure inside the tissue allowing better dye diffusion.
The subventricular zone (SVZ) is one of the two neurogenic zones in the postnatal brain. The SVZ contains densely packed cells, including neural progenitor cells with astrocytic features (called SVZ astrocytes), neuroblasts, and intermediate progenitor cells. Neuroblasts born in the SVZ tangentially migrate a great distance to the olfactory bulb, where they differentiate into interneurons. Intercellular signaling through adhesion molecules and diffusible signals play important roles in controlling neurogenesis. Many of these signals trigger intercellular calcium activity that transmits information inside and between cells. Calcium activity is thus reflective of the activity of extracellular signals and is an optimal way to understand functional intercellular signaling among SVZ cells.
Calcium activity has been studied in many other regions and cell types, including mature astrocytes and neurons. However, the traditional method to load cells with calcium indicator dye (i.e. bath loading) was not efficient at loading all SVZ cell types. Indeed, the cellular density in the SVZ precludes dye diffusion inside the tissue. In addition, preparing sagittal slices will better preserve the three-dimensional arrangement of SVZ cells, particularly the stream of neuroblast migration on the rostral-caudal axis.
Here, we describe methods to prepare sagittal sections containing the SVZ, the loading of SVZ cells with calcium indicator dye, and the acquisition of calcium activity with time-lapse movies. We used Fluo-4 AM dye for loading SVZ astrocytes using pressure application inside the tissue. Calcium activity was recorded using a scanning confocal microscope allowing a precise resolution for distinguishing individual cells. Our approach is applicable to other neurogenic zones including the adult hippocampal subgranular zone and embryonic neurogenic zones. In addition, other types of dyes can be applied using the described method.
1. Preparation of Solutions, Dissection, and Vibratome
2. Removal of Brain Tissue
Acute brain slices tend to be healthier with younger mice. The postnatal SVZ’s cellular architecture in rodents is mature around postnatal day (P)201. Therefore, we try to limit our experiments to mouse ages of P20-P30 but we have performed successful experiments in mice as old as 3 months. Throughout handling of the tissue, one must be mindful to minimize mechanical movements and pressure to the brain, maintain cooled conditions, and expose the SVZ to solution as quickly as possible following sacrifice.
3. Acute Brain Slice Preparation
4. Preparation of Microscope and Dyes
The slices require a one hour incubation time in ACSF to recover from the dissection and slicing. Several steps can be performed during this slice recovery period.
5. Dye Loading
This method has been described in detail in another manuscript2. Please see figures therein.
6. Confocal Imaging of Calcium Activity
7. Calcium Analysis
Analysis follows standard procedures that we described in pervious publications2-4. F0 (i.e. baseline) and F are the mean fluorescence intensities measured throughout all of the regions of interest (ROIs) and in each ROI, respectively. A change in fluorescence was considered to be a Ca2+ increase if it was >15% F/F0 increase. Intracellular Ca2+ changes were calculated using Calsignal5.
8. Representative Results
We have been able to obtain selective loading of SVZ cells depending on the dye loading protocols described above and elsewhere2-4,6. Bath loading or pressure application on the slice surface of Fluo-4 AM (4-5 or 250 μM, respectively) labels mostly neuroblasts. While pressure application can load neuroblasts more quickly than bath loading in a single slice, bath loading allows the simultaneous loading of multiple slices. We confirm the identity of labeled cells as neuroblasts by (1) whether they display migratory behavior4,7, (2) their morphology, (3) negative staining of sulforhodamine 101, an astrocyte-specific dye3 or (4) positive staining with DCX-DsRed expression (JC Platel, unpublished observation). Neuroblasts migrate quickly (average of 60 μm/hr) at physiological temperature4,7-9, but their movement can be readily observed even at room temperature. The movement of neuroblasts does not pose an issue with regards to placing regions-of-interest (ROI) to track calcium activity since our movies are typically short in duration. However, during long waiting periods, such as during drug solution exchanges, investigators must be careful to match ROIs in control and treatment periods. It is not uncommon for neuroblasts to migrate into or out of the imaging field or focal plane.
Pressure application of Fluo-4 AM (250 μM) deep into the slice and for limited duration (<2 min) preferentially labels SVZ astrocytes2. Astrocyte labeling has been verified by positive labeling with sulforhodamine 101 and their morphology, especially by the presence of projections and endfeet on blood vessels which we have recently described3. Using these methods, we have observed spontaneous activity in both the SVZ neuroblast and astrocyte population (Figure 1). The activity in astrocytes often takes the form of waves that engage blood vessel3. Furthermore, using calcium imaging as an assay, the application of pharmacological agonists has revealed or confirmed expression of GABAA receptors on neuroblasts and astrocytes6, AMPA and NMDA receptors on neuroblasts4.
Figures
Figure 1. Propagating calcium activity in astrocytes. (A) Representative averaged image from a time-lapse recording of calcium activity. Astrocytes in the SVZ were loaded with pressure application of Fluo-4 AM deep into the slice. Movies were acquired at 0.75 s time-steps. Regions of interest (ROI) are placed over cells exhibiting activity. (B) Traces from ROIs placed over cells from the movie depicted in (A). Traces were filtered with a moving average and normalized. The vertical scale represents 2 x ΔF/F0 where F is the signal intensity and F0 is the average baseline signal and ΔF= F-F0.
Figure 2. Picture of the perfusion system. One end of a tube is submerged in 95% O2/5% CO2 gas-perfused solution. The solution is then perfused through the tube and to the bath chamber by a peristaltic pump (not shown). The other end is inserted into the solution inlet of the bath chamber mounted on a platform. The aspiration tip is then connected to the solution outlet of the chamber and set at a level to determine solution height. From the outlet, the aspiration tip is connected to the vacuum line, which aspirates the solution from the chamber into a waste container. The perfusion system is shown off the microscope stage for visual clarity.
Calcium imaging of SVZ cells has been used to study patterns in spontaneous activity in neuroblasts10, receptor channel expression in both neuroblasts and astrocytes4,6,8 and astrocytic calcium waves3. Since cells in the SVZ are either immature or have glial properties, they do not fire action potentials11,12, meaning that millisecond changes in voltage potential indicative of activity in mature networks is not applicable in this region. Therefore, capturing the slower calcium events (on the order of seconds) is not only biologically meaningful, but perhaps the most relevant form of activity in these cells.
Investigators must be mindful of many steps in this procedure, especially with regards to slice health. Improper making of solutions, poor water quality (used to make solutions), slow and imprecise dissections, and the use of dirty razor blades to cut tissue could all have detrimental effects on activity.
With regards to the use of calcium indicators, while we only discussed the use of Fluo-4AM, we have tried other commercial dyes, including Oregon Green BAPTA-AM, which has a higher baseline loading level than Fluo-4. We chose to focus on Fluo-4 because of its larger dynamic range compared to other dyes, but other investigators may find different dyes advantageous for their purposes. Every dye may have different affinity for certain cell types. Concentration and method of loading may need to be adjusted for each dye. We preferentially used pressure loading to label SVZ astrocytes and healthier, deeper cells. A financial factor to consider is that using pressure application is more costly than bath application, although the dye solution in the pressure pipette can be frozen and reused the next day. Alternatively, genetically-encoded calcium indicators (GECIs), such as GCaMP3, have been increasingly popular for studying other systems and brain regions13,14. These GECIs have the advantage of being driven under cell-specific promoters, but their kinetics and dynamic range are generally not better than the organic dyes15. Their use in the postnatal SVZ also requires viral labeling or electroporation of the construct, the latter limiting study of neuroblasts to the neonatal period due to loss of plasmid during cell division.
Slice drift prevents reliable signal acquisition during the duration of the movie and is one of the most challenging technical hurdles with live-imaging experiments of brain slices. It is affected by several factors including perfusion rate, vacuum placement, objective weight, and, if applicable, temperature gradients. If temperatures greater than 25 °C are necessary for experiments, one should attempt to heat solutions and perfusion chambers at the lowest temperature where they can address their questions since temperatures may lead to significant, undesired focus drift. Objective heaters and heated enclosures could also help minimize this effect, although we have tried the former without much success.
Barring these technical hurdles, researchers have the opportunity to assay a large number of cells in a postnatal developing region. This presents the opportunity to address activity on a population level, which could yield new insights into the processes regulating neurogenesis.
The authors have nothing to disclose.
This work was supported by grants from the NIH (DC007681, A.B.), CT Stem Cell grant (A.B.), Pardee foundation (A.B.), Predoctoral Ruth L. Kirschstein National Research Service Awards (NRSA) (S.Z.Y.), and an NSF Graduate Research Fellowship (B.L.). We thank the Bordey lab members for helpful comments on the manuscript. The present material is based upon work partly supported by the State of Connecticut under the Connecticut Stem Cell Research Grants Program. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the State of Connecticut, the Department of Public Health of the State of Connecticut or CT Innovations, Incorporated.
Solute | Company | Catalog Number | Dissection (mM) |
Sucrose | Sigma | S0389 | Dissection: 147 mM ACSF: 0 mM |
NaCl | Sigma | S9888 | Dissection: 42 mM ACSF: 126 mM |
KCl | Sigma | P3911 | Dissection: 2.5 mM ACSF: 2.5 mM |
MgCl2.6H2O | Sigma | M9272 | Dissection: 4.33 mM ACSF: 1 mM |
NaH2PO4.H2O | Sigma | S8282 | Dissection: 1.25 mM ACSF: 1.25 mM |
Glucose | Sigma | G8270 | Dissection: 10 mM ACSF: 10 mM |
NaHCO3 | Sigma | S6014 | Dissection: 26 mM ACSF: 26 mM |
CaCl2.2H2O | Sigma | C3306 | Dissection: 1.33 mM ACSF: 2 mM |
Table 1. Chemical list and recipes of dissection solution and ACSF.
[header] | |||
Name | Company | Catalogue Number | コメント |
Vibratome | Leica | VT 1000S | |
Super Glue | Surehold or 3M | Surehold 3G Super Glue or 3M Vet-Bond | |
Dissection tools | Roboz or Ted Pella | ||
Fluo-4 AM calcium-sensitive dye | Invitrogen | F14201 | |
Oregon Green BAPTA-1 AM calcium-sensitive dye | Invitrogen | O6807 | |
Pluronic F-127 20% solution in DMSO | Invitrogen | P3000MP | |
Upright confocal microscope | Olympus | FV300 or FV1000 | |
Water-immersion objectives | Olympus | LUMPlanFl 40 x W/IR (NA 0.80); LUMPlanFl 60 x W/I (NA 0.90) | |
Micromanipulators | Sutter | MPC-200/MPC-325/MPC-385 | |
Pressure controller | Parker Hannifin | Picospritzer | <3 PSI during application |
Pipette puller | Sutter or Narshige | Sutter P-97 or Narshige PP-830 | |
Glass pipettes | Sutter | BF150-110-10 | I.D.:1.10, O.D.: 1.50 |
Peristaltic pump | Harvard Apparatus | Model 720 | flow rate: 1 ml/min |
Chamber bath | Warner Instruments | RC-26 GLP | Low profile allows for objective clearance |
Tubing | Tygon | ||
Temperature Controller | Warner Instruments | TC-324B/344B |
Table 2. Materials/equipment list.