Dissociating cells from specific tissue types requires specific parameters for tissue aggitation to obtain a high volume of viable, culturable cells. The Miltenyi gentleMACS Dissociator optimizes this task with a simple, practical protocol. In this publication the use of this apparatus on nerual tissue is explained.
To work under sterile conditions, it is recommended to perform all steps in a laminar flow hood.
1. Materials
2. Dissociating the neural tissue
3. Filtration
4. Representative Result: Please See Figures 1-3
Figure. 1 The brain dissociation with the gentleMACS Dissociator resulted in 97% viable cells, as flow cytometric analysis shows.
Figure. 2 Light microscope picture of neurosphere formation after magnetic cell sorting using Anti-Prominin-1 MicroBeads after 7 days of cultivation in MACS® NeuroMedium supplemented with MACS Supplement B27 PLUS. Cells were prepared from CD1 mouse brain (P3) using the Neural Tissue Dissociation Kit (P).
Figure. 3 Myelin debris in single-cell suspensions considerably impairs cell isolation, and removal of myelin debris by Myelin Removal Beads increases efficiency cell separations. For MACS Separations using Anti-Prominin-1 MicroBeads, P22 mouse brain was dissociated using the Neural Tissue Dissociation Kit (P). Cells from the single-cell suspension were either directly used for separation, or were submitted to myelin depletion using Myelin Removal Beads. Comparing the separation from samples without and with myelin removal, demonstrates that the purity is higher for samples with previous myelin removal.
The gentleMACS Dissociator facilitates the standardized preparation of single-cell suspensions from neural tissues in a closed system. Neural Tissue Dissociation Kits are optimized to preserve antigen epitopes needed for further applications like immunostainings and immunomagnetic cell separation1-5. In this protocol we show the gentle enzymatic dissociation of mouse brain using the gentleMACS Dissociator and the Neural Tissue Dissociation Kit (P), yielding in 97% viable cells. 100 mg of neural tissue yields between 5×106 and 1×107 cells, depending on the age of the host tissue. The targeted Prominin-1+ cells were isolated using Anti-Prominin-1 MicroBeads and subsequently taken into culture. The protocol is shown to be even more effective with the additional use of Myelin Removal Beads when working with neural tissue derived from mice >P7.
The authors have nothing to disclose.