The present protocol explains the generation of a 2D monolayer of cerebellar cells from induced pluripotent stem cells for investigating the early stages of cerebellar development.
The precise and timely development of the cerebellum is crucial not only for accurate motor coordination and balance but also for cognition. In addition, disruption in cerebellar development has been implicated in many neurodevelopmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and schizophrenia. Investigations of cerebellar development in humans have previously only been possible through post-mortem studies or neuroimaging, yet these methods are not sufficient for understanding the molecular and cellular changes occurring in vivo during early development, which is when many neurodevelopmental disorders originate. The emergence of techniques to generate human-induced pluripotent stem cells (iPSCs) from somatic cells and the ability to further re-differentiate iPSCs into neurons have paved the way for in vitro modeling of early brain development. The present study provides simplified steps toward generating cerebellar cells for applications that require a 2-dimensional (2D) monolayer structure. Cerebellar cells representing early developmental stages are derived from human iPSCs via the following steps: first, embryoid bodies are made in 3-dimensional (3D) culture, then they are treated with FGF2 and insulin to promote cerebellar fate specification, and finally, they are terminally differentiated as a monolayer on poly-l-ornithine (PLO)/laminin-coated substrates. At 35 days of differentiation, iPSC-derived cerebellar cell cultures express cerebellar markers including ATOH1, PTF1α, PAX6, and KIRREL2, suggesting that this protocol generates glutamatergic and GABAergic cerebellar neuronal precursors, as well as Purkinje cell progenitors. Moreover, the differentiated cells show distinct neuronal morphology and are positive for immunofluorescence markers of neuronal identity such as TUBB3. These cells express axonal guidance molecules, including semaphorin-4C, plexin-B2, and neuropilin-1, and could serve as a model for investigating the molecular mechanisms of neurite outgrowth and synaptic connectivity. This method generates human cerebellar neurons useful for downstream applications, including gene expression, physiological, and morphological studies requiring 2D monolayer formats.
Understanding human cerebellar development and the critical time windows of this process is important not only for decoding the possible causes of neurodevelopmental disorders but also for identifying new targets for therapeutic intervention. Modeling human cerebellar development in vitro has been challenging, yet over time, many protocols differentiating human embryonic stem cells (hESCs) or iPSCs with cerebellar lineage fates have emerged1,2,3,4,5,6,7,8. Furthermore, it is important to develop protocols that generate reproducible results, are relatively simple (to reduce error), and are not heavy on monetary costs.
The first protocols for cerebellar differentiation were generated from 2D cultures from plated embryoid bodies (EBs), inducing cerebellar fate with various growth factors similar to in vivo development, including WNT, BMPs, and FGFs1,9. More recent published protocols induced differentiation primarily in 3D organoid culture with FGF2 and insulin, followed by FGF19 and SDF1 for rhombic lip-like structures3,4, or used a combination of FGF2, FGF4, and FGF85. Both cerebellar organoid induction methods resulted in similar 3D cerebellar organoids as both protocols reported similar cerebellar marker expression at identical time points. Holmes and Heine extended their 3D protocol5 to show that 2D cerebellar cells can be generated from hESCs and iPSCs, which start as 3D aggregates. In addition, Silva et al.7 demonstrated that cells representing mature cerebellar neurons in 2D can be generated with a similar approach to Holmes and Heine, using a different time point for switching from 3D to 2D and extending the time of growth and maturation.
The current protocol induces cerebellar fate in feeder-free iPSCs by generating free-floating embryoid bodies (EBs) using insulin and FGF2 and then plating the EBs on PLO/laminin-coated dishes on day 14 for 2D growth and differentiation. By day 35, cells with cerebellar identity are obtained. The ability to recapitulate the early stages of cerebellar development, especially in a 2D environment, allows researchers to answer specific questions requiring experiments with a monolayer structure. This protocol is also amenable to further modifications such as micropatterned surfaces, axonal outgrowth assays, and cell sorting to enrich the desired cell populations.
The human subjects research was approved under the University of Iowa Institutional Review Board approval number 201805995 and the University of Iowa Human Pluripotent Stem Cell Committee approval number 2017-02. Skin biopsies were obtained from the subjects after obtaining written informed consent. The fibroblasts were cultured in DMEM with 15% fetal bovine serum (FBS) and 1% MEM-non-essential amino acids solution at 37 °C and 5% CO2. Fibroblasts were reprogrammed using an episomal reprogramming kit following the manufacturer's protocol (see Table of Materials) using a nucleofector for electroporation. All procedures were performed in a Class II Type A2 biological safety cabinet ("hood" for short). All cell culture media were antibiotic-free; therefore, every component that entered the hood was cleaned with 70% ethanol. All cell culture media and components were sterile filtered or opened in the hood to maintain their sterility.
1. Experimental preparation
2. Feeder-free iPSC culture
3. Cerebellar differentiation
NOTE: Before starting the differentiation, iPSCs are passaged to six 35 mm dishes and are ready for the differentiation when they are at 70% confluency. Each 35 mm plate will be transferred to one well of the 6-well plate.
4. Sample preparation for RNA isolation
5. Preparing cells for immunofluorescent staining
NOTE: For a 24-well plate, one EB per well is sufficient.
Overview of the 3D to 2D cerebellar differentiation
Cerebellar cells are generated starting from iPSCs. Figure 1A shows the overall workflow and the addition of major components for differentiation. On day 0, EBs are made by gently lifting the iPSC colonies (Figure 1B) using a pulled glass pipette in CDM containing SB431542 and Y-27632 and placed into ultra-low-attachment plates. FGF2 is added on day 2. On day 7, one-third of the medium is changed, and EB formation is observed (Figure 1C). On day 14, enlarged EBs (Figure 1D) are plated on PLO/laminin-coated dishes in CDM supplemented with Y-27632. On Day 15, the medium is replaced with CDM without Y-27632. The cells start migrating outward from the EBs (Figure 1E) along the coated surface. On day 21, a complete medium change is performed, and the medium is switched to CMM. After that, the medium is changed once weekly (or more frequently if the medium acidifies quickly). By day 35, there is a monolayer of cells with neuronal-like morphology and complexity (Figure 1F,G).
2D cells express cerebellar cell markers
Cells are harvested on day 35 for RNA isolation and immunofluorescent labeling. The expression of genes known to be present during cerebellar development is measured by RT-qPCR (Figure 2). The cells express early cerebellar progenitor markers such as ATOH112,13 (rhombic lip, glutamatergic progenitors) and PTF1α14 (ventricular zone, GABAergic progenitors), as well as the Purkinje progenitor cell markers KIRREL215 and SKOR215. In addition to the early developmental cerebellar cell markers, the expression of later-stage development genes, OTX2 and SIX3, is also observed. The immunofluorescent labeling of cells shows positive staining for the cerebellar markers EN2 and PTF1α (Figure 3A,D), the neuronal marker TUBB3 (Figure 3G), as well as for the proliferation marker Ki67 (Figure 3J). Nuclear staining with 4′,6-diamidino-2-phenylindole (DAPI) shows cell nuclei (Figure 3B,E,H,K). To further validate this protocol, iPSCs derived from patients with a neuropsychiatric disorder were used to generate cerebellar cells and analyze cerebellar cell marker expression at day 35. The RT-qPCR data indicate a similar expression profile as the control iPSCs (Supplementary Figure 1). Additionally, the expression of axonal guidance molecules relevant for cerebellar development is present both in control and patient-derived cerebellar cells (Supplementary Figure 2).
Figure 1: Overview of the protocol timeline and representative images. (A) A schematic outline of the cerebellar differentiation protocol depicting the type of culture medium, the supplements added to the culture medium, the days when a medium change is required (indicated with vertical lines), and the surface coating of the culture dish. (B) Representative bright field images of iPSCs on day 0 and differentiated cells that will be cleaned off before making EBs (shown in red circle), (C) EBs on day 7 and (D) day 14, (E) the day after plating the EBs, and (F,G) maturing cells on day 35. Scale bar (B–D): 1 mm; (E–G): 500 µm. Please click here to view a larger version of this figure.
Figure 2: Expression of cerebellar cell markers in 2D cerebellar cells at day 35. RT-qPCR gene expression results at day 35 for selected genes representing different cerebellar development markers and cell types, normalized to GAPDH. The -ΔCt values represent GAPDH-Ct values subtracted from target-Ct values; values closer to zero indicate higher expression. Any value below the ticked line represents expression below the detectable limit. N = 2 iPSC lines, data are presented as mean ± SD. Please click here to view a larger version of this figure.
Figure 3: Immunofluorescent labeling of 2D cerebellar cells at day 35. Cells are fixed with 4% PFA at day 35 and are nuclear stained with DAPI and immunolabeled for (A) EN2 (green), (B) DAPI (blue), (C) EN2-DAPI merged; (D) PTF1α (red), (E) DAPI (blue), (F) PTF1α-DAPI merged; (G) TUBB3 (green), (H) DAPI (blue), (I) TUBB3-DAPI merged; and (J) Ki67 (red), (K) DAPI (blue), (L) Ki67-DAPI merged. Scale bars: 100 µm. Please click here to view a larger version of this figure.
Supplementary Figure 1: Representative images of cerebellar differentiation using iPSCs derived from patients diagnosed with schizophrenia. (A) iPSC colonies, (B) EBs on day 7, (C) day 14, (D) cells growing out from plated EBs on the PLO/laminin-coated dish on day 15, and (E) cerebellar cells on day 35. (F) RT-qPCR results for gene expression at day 35 for cerebellar cell markers, normalized to GAPDH. The -ΔCt values represent GAPDH-Ct values subtracted from target-Ct values; values closer to zero indicate higher expression. Any value below the ticked line represents expression below the detectable limit. N = 2 iPSC lines, data are presented as mean ± SD. Scale bar (A–C): 1 mm; (D,E): 500 µm. Please click here to download this File.
Supplementary Figure 2: Gene expression of axonal guidance molecules of 2D cerebellar cells at day 35. RT-qPCR gene expression results at day 35 for selected molecules involved in axon guidance signaling, normalized to GAPDH. All genes shown are known to be expressed in the cerebellum except for PlxnB3, which has low expression in the cerebellum across development. The -ΔCt values represent GAPDH-Ct values subtracted from target-Ct values; values closer to zero indicate higher expression. Any value below the ticked line represents expression below the detectable limit. N (control) = 1, N (SCZ) = 1, and the mean of experiments run in triplicate is shown. Abbreviation: SCZ = schizophrenia. Please click here to download this File.
The ability to model human cerebellar development in vitro is important for disease modeling as well as furthering the understanding of normal brain development. Less complicated and cost-effective protocols create more opportunities for replicable data generation and broad implementation across multiple scientific labs. A cerebellar differentiation protocol is described here using a modified method of generating EBs that does not require enzymes or dissociation agents, using growth factors reported by Muguruma et al.4 and a modified 2D monolayer cell growth protocol similar to the method from Holmes et al.5.
The overall protocol starts by generating EBs from iPSCs, followed by the induction of cerebellar differentiation, and, finally, plating for 2D monolayer culture. During this process, a significant amount of cell death was observed between days 7-14. Due to this cell loss, it is advised to start with a large number of EBs; for a 6-well plate of 2D cells, it is recommended to start with a minimum of six plates (either 35 mm or 60 mm plates) of iPSCs. Moreover, the addition of Y-27632 at the time of plating EBs onto PLO/laminin significantly increases the attachment of the EBs to the substrate. It is important to check the medium in the cultures intermittently visually. If the medium is turning yellow (acidifying), it is advised to change the medium even if it is not in the feeding scheme. The total number of cells that attach will vary from experiment to experiment, necessitating more frequent or less frequent refreshing of nutrients in the medium.
The RT-qPCR results revealed that the iPSCs differentiated into cells representing the early stages of the developing cerebellum. The present data suggest that, at day 35 of differentiation, there are cells expressing the neuronal cell fate marker (TUBB316,17), glutamatergic and GABAergic progenitor markers (ATOH112,13 and PTF1α14, respectively), midbrain-hindbrain boundary markers (EN118, EN218, GBX219), isthmic organizer markers (WNT118, FGF819), rhombic lip derivative cell marker (PAX618), and Purkinje cell progenitor markers (KIRREL215, SKOR220). Expression of the rhombic lip marker OTX221 was also observed. Previous cerebellar organoid protocols using hESCs have observed that FGF2 induction results in GBX2 expressing cells but very few OTX2 positive cells, while a similar protocol using iPSCs showed identical mRNA expression of GBX2 and OTX2 in cerebellar organoids8. However, mouse embryonic stem cell (mESC)-derived cerebellar neurons contain separate OTX2 and GBX2 positive cell clusters4, and it has been shown that OTX2 is expressed throughout mouse22 and human21,23 cerebellar development. The differential expression profile of OTX2 between protocols using the same fate specification factors might be due to other differences between the protocols or individual differences between hESCs and iPSCs; this merits further investigation. SIX3 expression was also observed in the culture on day 35. SIX3 is expressed in the anterior neural tube during development, and its expression in the human cerebellum remains low throughout development and adulthood23,24; however, it is expressed in the neonatal and adult mouse cerebellum25. This suggests that there might be a subpopulation of cells that differentiate toward an anterior fate, or they may represent a subpopulation of cerebellar cells expressing SIX3 during development. These cells could be further explored.
Differentiation protocols are often developed using hESCs or iPSCs from healthy subjects, but it is important to confirm that these protocols can be applied to patient-derived iPSCs for dissecting the molecular and cellular changes in disease. To further test our protocol, alongside our control iPSC lines, we differentiated iPSC lines that were reprogrammed from fibroblasts obtained from patients diagnosed with schizophrenia. The previous literature has shown that patients diagnosed with schizophrenia have functional and anatomical cerebellar abnormalities26,27,28. These changes are observed in adult patients but may begin during development and require further investigation. Overall, it was observed that cerebellar cells from schizophrenia patients expressed the cerebellar markers tested on day 35 and morphologically were not different from the cerebellar cells derived from control iPSCs (Supplementary Figure 1). This suggests that this protocol can investigate human cerebellar development in the disease context. Moreover, the expression of axonal guidance markers at day 35 was also examined, both in control and schizophrenia cell lines, since one of the major components of development is axonal pathfinding and neuronal connectivity29,30,31,32. Indeed, on day 35, axonal guidance molecules were verified that are indicated in cerebellar development, including semaphorin-4C, plexin-B2, and neuropilin-1 (Supplementary Figure 2). During development, plexin-B3 expression is low in the human cerebellum23, and a lower expression of plexin-B3 was also observed compared to the other axonal guidance molecules for the differentiations. Together with the expression of the cerebellar markers, this is a strong indication that this differentiation protocol generates cerebellar cells that express the correct cues for neuronal connectivity in that structure.
It is important to note that the cell types generated using this FGF2 and insulin-induced cerebellar differentiation protocol were not identified via single-cell analysis. Nayler et al.8 recently published a dataset of single-cell profiling of cerebellar organoids generated using a similar induction protocol, and it is anticipated that future research will increasingly employ single-cell methods to address these questions. The cells beyond day 35 also were not tested for expression or morphology. The expression of cerebellar markers at later time points and how they change over time will give more insights into the maturity of the cells. Co-culturing stem cell-derived cerebellar cells with mouse cerebellar granule cell precursors4 or human fetal cerebellar slices33 has been shown to generate mature cerebellar cells, especially Purkinje neurons, which are often absent in cerebellar organoids. Notably, a recent study showed that cerebellar organoids dissociated on differentiation day 35 and plated for 2D growth also give rise to mature cerebellar neurons without needing co-culturing7. These applications aim to investigate the later stages of cerebellar development and neural maturation in comparison to this protocol, which can be utilized to investigate the earlier stages of development. Another interesting comparison could arise from comparing cultured embryonic mouse cerebellar neurons34 to iPSC-derived human cerebellar neurons, potentially highlighting differences in development and fate specification between the two species.
In summary, the present protocol can be used for applications requiring in vitro 2D cerebellar cells generated from iPSCs. This protocol does not include complex steps or materials, is cost-efficient, and can be used as a model for early cerebellar development to investigate gene expression, cell morphology, and physiology.
The authors have nothing to disclose.
We thank Jenny Gringer Richards for her thorough work in validating our control subjects, from which we generated the control iPSCs. This work was supported by NIH T32 MH019113 (to D.A.M. and K.A.K.), the Nellie Ball Trust (to T.H.W. and A.J.W.), NIH R01 MH111578 (to V.A.M. and J.A.W.), NIH KL2 TR002536 (to A.J.W.), and the Roy J. Carver Charitable Trust (to V.A.M., J.A.W., and A.J.W.). The figures were created with BioRender.com.
10 mL Serological pipette | Fisher Scientific | 13-678-26D | |
1-thio-glycerol | Sigma | M6145 | |
2 mL Serological pipette | Fisher Scientific | 13-678-26B | |
250 mL Filter Unit, 0.2 µm aPES, 50 mm Dia | Fisher Scientific | FB12566502 | |
35 mm Easy Grip Tissue Cluture Dish | Falcon | 353001 | |
4D Nucleofector core unit | Lonza | 276885 | Nucleofector |
5 mL Serological pipette | Fisher Scientific | 13-678-25D | |
60 mm Easy Grip Tissue Culture Dish | Falcon | 353004 | |
6-well ultra-low attachment plates | Corning | 3471 | |
9" Disposable Pasteur Pipets | Fisher Scientific | 13-678-20D | |
Apo-transferrin | Sigma | T1147 | |
Bovine serum albumin (BSA) | Sigma | A9418 | |
Cell culture grade water | Cytiva | SH30529.02 | |
Chemically defined lipid concentrate | Gibco | 11905031 | |
Chroman 1 | Cayman | 34681 | |
Class II, Type A2, Biological safety Cabinet | NuAire, Inc. | NU-540-600 | Hood, UV light |
Costar 24-well plate, TC treated | Corning | 3526 | |
Costar 6-well plate, TC treated | Corning | 3516 | |
DAPI solution | Thermo Scientific | 62248 | |
DMEM | Gibco | 11965092 | |
DMEM/F12 | Gibco | 11320033 | |
DMSO (Dimethly sulfoxide) | Sigma | D2438 | |
DPBS+/+ | Gibco | 14040133 | |
Emricasan | Cayman | 22204 | |
Epi5 episomal iPSC reprogramming kit | Life Technologies | A15960 | |
Essential 8-Flex | Gibco | A2858501 | PSC medium with heat-stable FGF2 |
EVOS XL Core Imaging system | Life Technologies | AMEX1000 | |
Fetal bovine serum – Premium Select | Atlanta Biologicals | S11150 | |
FGF2 | Peprotech | 100-18B | |
GlutaMAX supplement | Gibco | 35050061 | L-alanine-L-glutamine supplement |
Ham's F12 Nutrient Mix | Gibco | 11765054 | |
HERAcell VIOS 160i CO2 incubator | Thermo Scientific | 50144906 | |
Human Anti-EN2, mouse | Santa Cruz Biotechnology | sc-293311 | |
Human anti-Ki67/MKI67, rabbit | R&D Systems | MAB7617 | |
Human anti-PTF1a, rabbit | Novus Biologicals | NBP2-98726 | |
Human anti-TUBB3, mouse | Biolegend | 801213 | |
IMDM | Gibco | 12440053 | |
Insulin | Gibco | 12585 | |
Laminin Mouse Protein | Gibco | 23017015 | |
Matrigel Matrix | Corning | 354234 | Basement membrane matrix |
MEM-NEAA | Gibco | 11140050 | |
Mini Centrifuge | Labnet International | C1310 | Benchtop mini centrifuge |
Monarch RNA Cleanup Kit (50 µg) | New England BioLabs | T2040 | Silica spin columns |
Monarch Total RNA Miniprep Kit | New England BioLabs | T2010 | Silica spin columns |
N-2 supplement | Gibco | 17502-048 | |
Neurobasal medium | Gibco | 21103049 | |
PBS, pH 7.4 | Gibco | 10010023 | |
PFA 16% | Electron Microscopy Sciences | 15710 | |
Polyamine supplement | Sigma | P8483 | |
Poly-L-Ornithine (PLO) | Sigma | 3655 | |
Potassium chloride | Sigma | 746436 | |
SB431542 | Sigma | 54317 | |
See through self-sealable pouches | Steriking | SS-T2 (90×250) | Autoclave pouches |
Sodium citrate dihydrate | Fisher Scientific | S279-500 | |
Syringe filters, sterile, PES 0.22 µm, 30 mm Dia | Research Products International | 256131 | |
Trans-ISRIB | Cayman | 16258 | |
TRIzol Reagent | Invitrogen | 15596018 | Phenol and guanidine isothiocyanate |
TrypLE Express Enzyme (1x) | Gibco | 12604039 | Cell dissociation reagent |
Vapor pressure osmometer | Wescor, Inc. | Model 5520 | Osmometer |
Y-27632 | Biogems | 1293823 |