Here, we describe the methodology to knock out a gene of interest in the immune system using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas9)-based technologies and the evaluation of these mice in a cluster of differentiation 40 (CD40) agonistic antibody-induced colitis model.
The immune system functions to defend humans against foreign invaders such as bacteria and viruses. However, disorders of the immune system may lead to autoimmunity, inflammatory disease, and cancer. The inflammatory bowel diseases (IBD)-Crohn’s disease (CD) and ulcerative colitis (UC)-are chronic diseases marked by relapsing intestinal inflammation. Although IBD is most prevalent in Western countries (1 in 1,000), incident rates are increasing around the world. Through association studies, researchers have linked hundreds of genes to the pathology of IBD. However, the elaborate pathology behind IBD and the high number of potential genes pose significant challenges in finding the best therapeutic targets. Additionally, the tools needed to functionally characterize each genetic association introduce many rate-limiting factors such as the generation of genetically modified mice for each gene. To investigate the therapeutic potential of target genes, a model system has been developed using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas9)-based technologies and a cluster of differentiation 40 (CD40) agonistic antibody. The present study shows that CRISPR/Cas9-mediated editing in the immune system can be used to investigate the impact of genes in vivo. Limited to the hematopoietic compartment, this approach reliably edits the resulting reconstituted immune system. CRISPR/Cas9-edited mice are generated faster and are far less expensive than traditional genetically modified mice. Furthermore, CRISPR/Cas9 editing of mice has significant scientific advantages compared to generating and breeding genetically modified mice such as the ability to evaluate targets that are embryonic lethal. Using CD40 as a model target in the CD40 agonistic antibody-induced colitis model, this study demonstrates the feasibility of this approach.
Autoimmune diseases refer to conditions in which a patient's immune system attacks their own cells and organs, resulting in chronic inflammation and tissue damage. Nearly 100 different types of autoimmune conditions have been described to date, affecting 3-5% of the human population1. Many of the autoimmune conditions, including systemic lupus erythematosus and IBD, lack effective treatments and present significant unmet medical needs. Currently affecting around 1.5 million people in the USA alone, IBD is a devastating disease marked by progressive, persistent, and relapsing intestinal inflammation with no available cure. Unraveling the underlying pathogenesis and pathophysiology is needed to deliver the novel treatment and prevention strategies that IBD patients require2,3.
Over 230 different IBD loci have been identified through genome-wide association analyses (GWAS)4. Although these associations have elucidated new genes that are potentially important players in the key mechanisms and pathways of IBD, only a few genes from these loci have been studied. Some genes have been implicated in specific pathways. For example, the microbe-sensing pathway has been linked to nucleotide-binding oligomerization domain-containing protein 2 (NOD2); the autophagy pathway has been linked to autophagy-related 16 like 1 (ATG16L1), immunity-related GTPase family M (IRGM), and caspase recruitment domain family member 9 (CARD9); and the pro-inflammatory pathway has been linked to interleukin (IL)-23-driven T-cell responses4. Various in vivo mouse models have been used to functionally characterize genes identified through GWAS5,6.
One of the key models used to study IBD pathogenesis7,8 is the CD40 model of colitis, which induces innate immune intestinal inflammation following the injection of a CD40 agonistic antibody into immunodeficient (T and B-cell) mice. Primarily used to examine the contribution of innate immunity to IBD development, mostly macrophages and dendritic cells9, it is unclear if disease can be induced in fully immune-competent wild-type (WT) mice. In addition to animal models, gene-specific tools are also required for the functional characterization of a gene, including chemical compounds and biologics. More importantly, genetically modified animals are essential in revealing the function of a specific gene. However, the strategies typically used to make genetically modified mice-embryo injection and breeding-often take over a year and incur a significant financial cost. This rate-limiting process presents a significant challenge in the quest to elucidate the functions of the IBD-related genes identified by GWAS.
The protocol presented here provides a viable alternative to breeding genetically modified mice. First, as shown in the Figure 1 schematic, lineage-negative, stem cell antigen1-positive, receptor tyrosine kinase Kit-positive (lineage-Sca1+c-Kit+ or LSK) cells are isolated from the bone marrow of Cas9 knockin (KI) mice bearing a specific allele (CD45.2) to allow donor immune cell tracking. Next, these cells are exposed to lentiviruses bearing different guide RNAs (gRNAs) and a fluorescent marker, violet-excited green fluorescent protein (VexGFP), to allow tracking of transduced cells. Two days later, VexGFP+ cells are sorted and injected into lethally irradiated recipient Ly5.1 Pep Boy mice, which are C57Bl/6 mice bearing the CD45.1 allele to allow for recipient immune cell tracking. Twelve weeks later, the immune system is fully reconstituted, and the mice can be enrolled into in vivo models.
In addition to the benefit of cost savings and faster time-to-generation compared to the generation and breeding of genetically modified animals, this methodology is ideal for targets that are embryonic lethal, as it specifically targets the hematopoietic compartment. Furthermore, for targets where there are no tools available, such as an antibody, this system provides a feasible approach. In summary, to address the challenges described thus far, an in vivo CRISPR/Cas9-based genome editing platform was developed to expeditiously generate genetically modified animal models10,11,12,13,14. This study demonstrates that intestinal inflammation in WT C57Bl/6 mice can be induced by a CD40 agonistic antibody. CD40 is a key regulator of disease in this model and was therefore used as a model target to validate the CRISPR/Cas9-based knockout and loss of gene function.
All animal experiments performed following this protocol must be approved by the respective Institutional Animal Care and Use Committee (IACUC). All procedures described here were approved by the AbbVie IACUC.
1. Generation of required lentiviruses and procurement of donor and recipient animals
NOTE: The Table of Materials includes source and order number details for all animals, instruments, and reagents used in this protocol.
2. Bone marrow harvest and preparation for cell sorting
3. Cell sorting to isolate LSK cells for transduction
4. LSK transduction and culture to generate control and knockout cells
5. Animal irradiation to prepare for donor stem cell engraftment
6. Cell preparation and injection into irradiated recipient animals
7. CD40 agonistic antibody-induced colitis model in wild-type mice
NOTE: Weigh and assess the animals daily. Provide supportive care as needed: 1.0 mL of subcutaneous sodium chloride solution at 10% weight loss or if they are dehydrated. The positive control for this model is anti-p40 dosed intraperitoneally at 25 mg/kg twice per week beginning on day -1.
NOTE: In this study, experimental groups included naïve control, vehicle (negative) control, and anti-p40 (positive) control groups. Together, these groups control for the normal behavior of the CD40 agonistic antibody-induced colitis model. Vector, SgNone, and SgRNA groups: The vector controls for the common lentiviral vector, SgNone is a scrambled non-targeting guide control, and the SgRNA groups are the "treatment" groups bearing reduced expression of the target gRNA.
Following the procedure described above, mice expressing CD40-targeted gRNA were generated. By week 2, B-cells, CD11b+ macrophages, and CD11c+ dendritic cells (DCs) were engrafted (Figure 2). T-cells however, as expected based on previous literature18, took longer to fully engraft and required 12 weeks post-engraftment to reach ~90% (Figure 2). Immune organs, such as the spleen and lymph nodes, had the most notable population of donor-derived cells; however, other organs including the liver, lung, and intestine also showed the presence of donor cells (Figure 3). A strong reduction in CD40 expression was observed only in mice expressing CD40-targeting gRNA (Figure 4).
Similar to immunodeficient mice, following the CD40 agonistic antibody injection, WT C57Bl/6J mice exhibited body weight loss, vascular loss, and mucosal thickening as observed by colonoscopy, and myeloid cell infiltration determined by IHC with ionized calcium-binding adaptor molecule 1 (IBA1) (Figure 5). In addition to the typical readouts for the CD40 agonistic antibody-induced colitis model, an adaptive immune response was also observed, as shown by CD3 IHC revealing T-cell infiltration in the colon and by FACS analyses revealing T and B cell activation through CD86 upregulation on splenocytes (Figure 5). Importantly, an anti-p40 monoclonal antibody inhibited disease induction (Figure 5), which was consistent with the findings with the model using immunodeficient strains9.
A reduction in CD40 expression by targeted gRNA protected the mice from CD40 agonistic antibody-induced colitis. The degree of protection correlated with the editing efficiency of each gRNA (Figure 6). More specifically, SgCD40.1 was the most efficient gRNA (Figure 4), which led to the most powerful disease inhibition, as indicated by CD86 upregulation and intestinal infiltrate of immune cells (Figure 6D,E). Conversely, SgCD40.2 had the least editing efficiency of all three gRNAs used in vitro, which resulted in the least protection in vivo; SgCD40.3 exhibited intermediate editing and protection (Figure 6D,E). Taken together, the data shown here reveal the feasibility of using CRISPR/Cas9 to reduce the expression of a target, which can successfully protect from colitis induction. Most importantly, these results demonstrate that this in vivo CRISPR/Cas9-based platform can be used to investigate gene function in the pathogenesis of intestinal inflammation.
Figure 1: Stem cell harvest, transduction, and transplantation strategy used to generate CRISPR/Cas9-edited mice. Bones are harvested from Cas9 KI mice, bearing the CD45.2 allele as a donor cell marker. Bone marrow is isolated, and the cells are sorted for Lin-Sca1+c-Kit+ (LSK) stem cells. These cells are then exposed to various lentiviruses (vector control, SgNone Control, SgCD40.1), all bearing VexGFP as a fluorescent marker to indicate transduced. Stem cells are then sorted for VexGFP+ cells to inject a pure population of edited stem cells into lethally irradiated recipient mice. The recipient mice are Ly5.1 Pep Boy mice, which are C57Bl/6 WT mice bearing the CD45.1 allele as a recipient cell marker. Abbreviations: KI = knockin; VexGFP = violet-excited green fluorescent protein; WT = wild-type. Please click here to view a larger version of this figure.
Figure 2: Differentiation of immune cell subsets after LSK transplantation. CD45.2+ donor mice were euthanized, and their LSK cells were isolated and transplanted into lethally irradiated CD45.1 congenic C57Bl/6 animals. Every other week following transplantation, a small cohort of mice (n=5) was euthanized, and the engraftment rates in the spleen, bone marrow, and blood were evaluated by FACS. The percentage of donor cell subsets at different timepoints post-transplantation is shown. Each dot represents a data point from a single animal. Abbreviations: LSK = Lin-Sca1+c-Kit+; FACS = fluorescence-activated cell sorting; DC = dendritic cell; SEM = standard error of the mean. Please click here to view a larger version of this figure.
Figure 3: Distribution of donor LSK-differentiated cells in reconstituted animals. Recipient animals were reconstituted using LSK cells infected with mCherry-expressing virus. Tissues were harvested at week 12 post-transplantation and mCherry expression (brown) was evaluated by IHC: (A) spleen, (B) mesenteric lymph nodes, (C) lung, (D) liver, (E) small intestine, (F) large intestine, (G) kidney, (H) skin. This figure has been modified from Wang et al.19. Scale bar = 100 µm. Abbreviations: LSK = Lin-Sca1+c-Kit+; IHC = immunohistochemistry. Please click here to view a larger version of this figure.
Figure 4: CRISPR/Cas9-mediated reduction in CD40 expression on B-cells. CD40 expression reduction in reconstituted mice, modulated using a CRISPR/Cas9-based platform. Splenocytes were evaluated 8 weeks post-transplantation by FACS for CD40 expression on B-cells. Each dot represents an individual animal. *p<0.005 Data shown are representative of two independent experiments. Abbreviations: FACS = fluorescence-activated cell sorting; SEM = standard error of the mean; Sg = single guide RNA. Please click here to view a larger version of this figure.
Figure 5: CD40 agonistic antibody-induced intestinal inflammation in C57Bl/6 mice. CD40 agonistic antibody was injected into C57Bl/6 mice to induce inflammation, and disease induction was evaluated based on (A) body weight change, (B) colonoscopy at day 3 and day 6 post-CD40 agonistic antibody injection, (C) percentage of IBA1+ and CD3+ areas of total mucosal area, mucosal thickness, as well as percentage of goblet cell area of total mucosal area, and (D) upregulation of CD86 expression in splenic B and T cells. In (B), representative images for day 6 colonoscopy are shown. In (C), representative images for day 7 histology are shown. Scale bar = 100 µm. *p<0.001 Data are representative results from two independent experiments. This figure has been modified from Wang et al19. Abbreviations: IBA1 = ionized calcium-binding adaptor molecule 1; SEM = standard error of the mean. Please click here to view a larger version of this figure.
Figure 6: CRISPR/Cas9-based knockout of CD40 ameliorates disease pathogenesis in a CD40 agonistic antibody-induced colitis model. LSK cells were infected with lentivirus-expressing control or SgCD40 and sorted for VexGFP. VexGFP+ cells were used to transplant lethally irradiated CD45.1+ recipient mice (n=10). Twelve weeks post-transplantation, colitis was induced by injecting CD40 agonistic antibody. (A–D) Disease induction was assessed by (A) body weight change, (B) colonoscopy at day 3 and day 6 post-CD40 agonistic antibody injection, (C) percentage of IBA1+ and CD3+ cell areas of total mucosal area, mucosal thickness as well as percent of goblet cell area of total mucosal area, and (D) upregulation of CD86 expression in splenic B and T cells. Representative (B) day 6 colonoscopy images and (C) day 7 histology images are included. Each dot represents an individual animal. Scale bar = 100 µm. *p<0.001. Data shown are representative of two experiments. This figure has been modified from Wang et al19. Abbreviations: IBA1 = ionized calcium-binding adaptor molecule 1; LSK = Lin-Sca1+c-Kit+; VexGFP = violet-excited green fluorescent protein; Sg = single guide RNA; SEM = standard error of the mean. Please click here to view a larger version of this figure.
Score | Vasculature | Thickening |
0 | The small and large blood vessels are bright, sharp, and have a continuous pattern, | The surface of the colon is smooth and shiny. |
1 | The small and large blood vessels are visible, but not connecting and out of focus. | The mucosal wall is less transparent and slightly bumpy with a shiny mucous layer. |
2 | The large blood vessels are still visible, but discontinuous, and a number of small vessels appear to have burst. | There is a clear white, shiny, bumpy layer covering most of the circumference. |
3 | No blood vessels are visible, and the surface of the colon is very bumpy. | There is an opaque, white, bumpy surface covering the circumference. |
Table 1: CD40 agonistic antibody-induced colitis endoscopy scoring scale. Images of the colon were collected at 3 cm, 2 cm, and 1 cm from the anus. Each image was then evaluated for vascularity and thickening, scoring each parameter from 0-3 as indicated. The total score from all 3 images per animal was then combined to assign a sum endoscopy score to each animal.
The results shown here introduce a novel CRISPR/Cas9-based genome editing platform capable of investigating gene function in this CD40 agonistic antibody-induced colitis model. Cell sorting enriched the pool of genetically modified LSK cells, resulting in over 90% reduction in CD40 expression within the reconstituted animals-in just 4 months. Furthermore, the reduced expression of CD40 within the immune system had a profound effect within the CD40 agonistic antibody-induced colitis model, significantly reducing disease endpoints. Based on these results, an in vivo CRISPR/Cas9-based platform was established, which provides researchers with a powerful tool to study a gene's function within the immune system. This technological advancement will expedite the process of validating new target biology, and ultimately, the ability to deliver transformative therapies to IBD and autoimmune patients in need.
The CRISPR/Cas9-based platform presented here enables efficient and efficacious gene modulation in WT C57Bl/6 mice. As the platform utilizes lethal irradiation and bone marrow transplants, it is expected that animals will be lost prior to complete engraftment. Therefore, powering the groups by 20% extra mice will help to account for these losses. As LSK cells isolated after 5-fluorouracil treatment had reduced c-kit expression, cell sorting is recommended to isolate LSKs. Additionally, high-titer virus should be used after concentration via ultracentrifugation. However, despite the high titer, the viruses did not efficiently infect LSK cells in this study. Perhaps ultracentrifugation concentrated the inhibitory factors, necessitating the use of a sucrose gradient to improve efficiency.
Usually the CD40 agonistic antibody-induced colitis model is used with immunodeficient recombination-activating gene (RAG) and severe combined immunodeficient (SCID) mice, as the primary value in the model is to evaluate innate immunity rather than adaptive immunity. Induced mice exhibit body weight loss, splenomegaly, intestinal inflammation, and myeloid cell infiltration in the colon. Demonstrated here, wild-type C57Bl/6 mice respond similarly to the CD40 agonistic antibody and to the positive control, anti-p40, which inhibited disease. The two main differences between the WT C57Bl/6 mice and immunodeficient mice are 1) WT C57Bl/6 mice require twice the dose of the CD40 agonistic antibody and 2) WT C57Bl/6 mice can have reduced disease levels on day 6 compared to day 3, as measured by endoscopy. Generally, immunodeficient mice maintain a similar level of disease from day 3 to day 6, sometimes showing exacerbation. More experiments are needed to definitively elucidate the cause of this difference, but the hypothesis points to regulatory T-cells, which are not present in immunodeficient mice, limiting and/or reversing disease a week after CD40 agonism.
In conclusion, this in vivo CRISPR/Cas9-based platform utilizes and combines LSK transplantation with CRISPR gene editing to efficiently reduce the expression of target genes within the immune system. With the potential to edit multiple genes in LSK cells via CRISPR/Cas9 in concert, this platform may provide the opportunity to evaluate digenic or polygenic phenotypes seen in IBD patients. Critical to efficiently and effectively assessing genes linked to IBD patients, this platform expedites the ability to accurately evaluate the function of genes within the immune system, which will reduce the time from discovery to the development of life-changing therapeutics.
The authors have nothing to disclose.
Thank you to Ruoqi Peng, Donna McCarthy, Jamie Erikson, Liz O'Connor, Robert Dunstan, Susan Westmoreland, and Tariq Ghayur for your efforts supporting this work. Thank you to Pharmacology leaders including Rajesh Kamath and others for their leadership in establishing the CD40 agonistic antibody-induced colitis model in WT C57Bl/6 mice. Additionally, thank you to all those at AbbVie Bioresearch Center and Cambridge Research Center in the Comparative Medicine East Department supporting in vivo experiments.
We would like to thank the Zhang lab from the Broad Institute and McGovern Institute of Brain Research at the Massachusetts Institute of Technology for providing CRISPR reagents [multiplex Genome Engineering Using CRISPR/Cas Systems. Cong, L, Ran, FA, Cox, D, Lin S, Barretto, R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F Science. 2013 Jan 3].
6-well tissue culture plates | Corning/Costar | #3506 | |
TransIT-LT1 | Mirus Bio | MIR 2300/5/6 | |
MACS Buffer (autoMACS Running Buffer) | Miltenyi Biotec | 130-091-221 | |
0.45 µm filter unit | Millipore | #SLHV013SL | |
0.6 mL microcentrifuge Tube | Axygen | MCT-060-C-S | |
1.5 mL Eppendorf Tube | Axygen | MCT-150-C-S | |
15mL Conical | VWR | 21008-918 | |
23 G Needle | VWR | #305145 | |
24 Well Non-TC Plates | Falcon | #351147 | |
24-Well TC Plates | Falcon | #353047 | |
50 mL Conical tube | VWR | 21008-951 | |
5 mL Syringe | BD Biosciences | #309647 | |
70 µm Filter | Miltenyi | #130-098-462 | |
96-Well Flat Bottom Plates | Corning | #3599 | |
96-Well U-Bottom Plates | Corning/Costar | #3365 | |
Anesthesia Machine | VetEquip – COMPAC5 | #901812 | |
Anti-CD40 Agonist monoclonal antibody | BioXcell | BE-0016 | |
Anti-p40 monoclonal antibody | BioXcell | BE-0051 | |
B220 PE Antibody | BioLegend | #103208 | |
Bovine serum albumin | Sigma Aldrich | A7906-100G | |
Cas9 Knock-in Mice | Jackson Labs | #026179 | C57Bl/6 background |
CD117+ Beads | Miltenyi | #130-091-224 | |
CD11b PE Antibody | BioLegend | #101208 | |
CD3 PE Antibody | BD Biosciences | #553240 | |
Centrifuge | Beckman Coulter | Allegra 6KR Centrifuge | |
Countertop Centrifuge | Eppendorf | Centrifuge 5424 | |
DPBS | ThermoFisher | #14190136 | |
Dulbecco’s Modified Eagle Medium | Mediatech | #10-013-CV | |
Ethylenediamine tetraacetic acid (EDTA) | Invitrogen | AM9260G | |
Endoscope | Karl Storz | N/A | Custom Coloview Tower |
Flow cytometer | BD Biosciences | FACS Aria II | |
Fms-related tyrosine kinase 3 ligand (Flt-L) | PeproTech | #250-31L | |
Gr-1 PE Antibody | BD Biosciences | #553128 | |
Hank's balanced salt solution (HBSS) | ThermoFisher | #14170120 | |
Heat-Inactivated Fetal Bovine Serum | HyClone | #SH30071.03 | |
IL-7 | PeproTech | #217-17 | |
Incubator | Binder | #9040-0116 | |
Isoflurane | HenrySchein | #6679401710 | |
LS Column | Miltenyi | #130-042-041 | |
Ly5.1 Pepboy Mice | Jackson Labs | #002014 | C57Bl/6 background |
mouse stem cell factor (mSCF) | PeproTech | #250-03 | |
Sodium chloride (NaCl) | Hospira | #00409488850 | |
OPTI-MEM serum-free media | Invitrogen | #31985-070 | |
Penicillin-streptomycin (PenStrep) | ThermoFisher | #15140-122 | |
Plate Shaker | ThermoFisher | #88880023 | |
pLentiPuro | Addgene | #52963 | |
Polybrene (10 µg/µL) | Sigma Aldrich | #TR-1003-G | |
Red Blood Cell Lysis Buffer | eBioscience | #00-4333 | |
Retronectin | Takarbio | #T100B | |
Sca-1 APC Antibody | BioLegend | #108112 | |
StemSpan | StemCell Technologies | #09600 | |
Ter119 PE Antibody | eBioscience | #12-5921 | |
Thrombopoietin (TPO) | PeproTech | #315-14 | |
X-ray Irradiator | Precision X-Ray | X-Rad 320 |
.