Bu yöntem, in situ hücresel kriyotomografi ve korelasyon ışık ve elektron mikroskobu (CLEM) için elektron mikroskobu (EM) ızgaralarının hazırlanması için erişilebilir ve esnek bir protokol sağlar.
Yerinde hücresel kriyotomografi, karmaşık nesneleri doğal dondurulmuş-hidratlı hücresel bağlamlarında incelemek için güçlü bir tekniktir ve bu da onu hücresel biyoloji ve viroloji ile oldukça alakalı hale getirir. Kriyotomografiyi diğer mikroskopi modaliteleri ile birleştirme potansiyeli, onu bütünleştirici ve korelasyonlu görüntüleme için mükemmel bir teknik haline getirir. Bununla birlikte, in situ hücresel tomografi için numune hazırlama kolay değildir, çünkü hücreler elektron mikroskobu ızgarasına kolayca bağlanmaz ve gerilmez. Ek olarak, ızgaraların kendileri kırılgandır ve çok güçlü bir şekilde kullanılırsa kırılabilir, bu da görüntülenebilir alanların kaybolmasına neden olur. Doku kültürü kaplarının geometrisi, ızgaraları cımbızla manipüle ederken de zorluk teşkil edebilir. Burada, bu (ve diğer) zorlukların üstesinden gelmek ve yerinde hücresel kriyotomografi ve yapışık memeli hücrelerinin korelasyon görüntülemesi için kaliteli numuneler hazırlamak için ipuçlarını ve püf noktalarını açıklıyoruz. Kriyomikroskopi teknolojisindeki sürekli ilerlemelerle, bu teknik, karmaşık biyolojik sistemler hakkındaki anlayışımızı ilerletmek için muazzam bir umut vaat ediyor.
İn situ hücresel kriyotomografi, kimyasal fiksasyon olmadan hücrelerde biyolojik olarak ilgili yapıların incelenmesine izin veren güçlü bir tekniktir. Hücreleri EM ızgaralarına bağlayarak ve ızgaraları bir kriyojende daldırarak dondurarak, ilgilenilen nesneler, hücre içi sudan kristal buz oluşmadandoğal hücresel bağlamlarında dondurulur 1,2. Hem kimyasal fiksasyon hem de kristal buz oluşumu, proteinler ve lipitler gibi ilgili moleküllerin yapılarını bozabilir ve bu teknikler kullanılarak elde edilen görüntülerin biyolojik doğruluğunu azaltabilir 3,4. Tomografide, ızgaralar elektron mikroskobu kullanılarak artımlı açılarda görüntülenir ve bu görüntüler daha sonra görüntülenen hedef bölgenin üç boyutlu temsillerini oluşturmak için kullanılır5. İn situ kriyotomografi, kriyofloresan görüntüleme, yumuşak x-ışını tomografisi ve kriyoFIB/SEM (kriyojenik Odaklanmış İyon Işını/Taramalı Elektron Mikroskobu) gibi bütünleştirici ve bağıntılı görüntüleme için diğer mikroskopi teknikleriyle birlikte kullanılabilir6,7,8,9,10,11. Birden fazla tekniğin entegrasyonu, bir yapı veya süreç hakkında herhangi bir mikroskopi tekniğinin elde edebileceğinden daha fazla bilgi elde edilmesini sağlar.
İn situ hücresel kriyotomografinin tüm faydalarına rağmen, numune hazırlama çeşitli nedenlerle zor olabilir. Kırılganlıkları nedeniyle, elektron mikroskobu ızgaralarının kuvvetli bir şekilde manipüle edilmesi, özellikle ince karbon tabakasının hassas ve yırtılmaya eğilimli olması, ızgaraların görüntülenebilir alanını azaltması nedeniyle hasara yol açabilir. Elektron mikroskobu ızgaralarının küçük boyutlarından dolayı manipüle edilmesi de zordur ve hücreleri büyütmek için kullanılan kuyuların veya mikro slaytların yüzeyinden ayrılmaya eğilimlidir. Kuyucuklar veya mikro slaytlar içindeki ızgaraların manipülasyonu, bunların geometrisi nedeniyle zor olabilir. Izgaraların yanlış hazırlanması (örneğin, yüzmelerine izin verilmesi), düşük hücre yoğunluğuna ve potansiyel görüntüleme alanlarının sayısının, özellikle hücrelerin ızgaralara bağlanmaya eğilimli olmadığı durumlarda, azalmasına neden olabilir. Doğrudan hücresel kriyotomografi için, hücrelerin çok ince yayılması gerekir, bu da uygun olmayan sıcaklıklar veya ızgaraların kaba kullanımı dahil olmak üzere birçok nedenden dolayı bozulabilir.
Çeşitli optimizasyonlar yoluyla, bu makalede sunulan teknikler, kriyotomografi için elektron mikroskobu ızgaralarının hazırlanması sırasında ortaya çıkan bu en yaygın tuzakları ele almayı amaçlamaktadır. 5/15 açılı cımbız kullanımı, kuyu plakaları veya mikro slaytlar içindeki ızgaraların manipüle edilmesine izin verir. Kaplamadan önce ızgaraların her iki tarafına uygulanan bir fibronektin çözeltisi, yüzen ızgaraları daha az olası hale getirir, bu da ızgaraların yeterli hücre yoğunluğuna sahip olmasını ve ızgaraların manipülasyon nedeniyle zarar görme olasılığının daha düşük olmasını sağlamada faydalıdır. Izgaraları 37°C’de dalma dondurmadan hemen öncesine kadar inkübe ederek, hücrelerin ince kenarlarını geri çekmesini önlemek için hücrelerin rahat bir ortamda tutulmasını da sağlıyoruz. Izgaraların arka taraftan karartılması, hücrelerin mekanik kuvvetten zarar görmesini de önler. Toplamda, bu önlemler, in situ hücresel kriyotomografi çalışmaları için numune hazırlamanın başarı oranını artırarak bu görüntüleme yaklaşımının erişilebilirliğini artırır.
Burada, in situ kriyoelektron tomografi uygulamaları için elektron mikroskobu ızgaralarındaki tohum hücrelerine erişilebilir, esnek ve tekrarlanabilir bir protokol sağladık. Bu yöntem, sonraki uygulamaların ihtiyaçlarına ve/veya deneysel gereksinimlere uyacak şekilde kolayca uyarlanabilir. Büyük esnekliğe ek olarak, ızgara tohumlamadaki yaygın tuzakları, özellikle karbon tabakasına verilen kapsamlı hasarı, düşük hücre yoğunluğunu ve ince hücre projeksiyonlarının zayıf yapısal bütünlüğünü optimize eden ve azaltan bir iş akışı tanımladık.
Burada açıklanan protokol birkaç alternatif sunsa da, genel sonuçları optimize etmek için izlenmesi gereken bazı kritik adımlar vardır. Izgara hücresi tohumlama ile ilgili en büyük sorunlardan biri, ızgaraların kuyudan veya mikro slayttan ayrılması ve yüzmesidir. Bu nedenle, ızgarayı her iki tarafta yapışkan bir çözelti ile tamamen ıslatmak ve inkübasyon süresi boyunca kurumasını önlemek önemlidir. 3D baskılı ızgara tutucular kullanıyorsanız, ızgaranın altında sıkışan hava onu tutucudan dışarı çıkmaya zorlayabileceğinden, bu tutucularda birden fazla ortam değişikliğinin yüzer ızgaralar üretme potansiyeline sahip olduğunu unutmayın.
Cımbız seçimimiz, karbon tabakasına zarar verebilecek kapsamlı ızgara bükülmesi olmadan ızgaraları manipüle etmenin geometrik olarak uygun bir yolunu sağlama yolunda ızgara kalitesini de artırır. Hücreleri daldırmadan önce mümkün olduğunca uzun süre 37 ° C’de tutmak, hücre ıstırabını azaltır ve ızgaradaki ince görüntülenebilir hücrelerin sayısını artırır. Son olarak, altın tarafından lekeleme, hücreleri kırılgan hücresel yapılara zarar verebilecek sert mekanik kuvvetlerden koruyacaktır.
Bu protokole dahil edilmemekle birlikte, ızgara foto-mikro modellemenin, ızgara karelerinin merkezine bağlanmalarını optimize ederek görüntülenebilir hücrelerin sayısını artırdığıgösterilmiştir 14. Son olarak, 3D baskılı ızgara tutucular, doğrudan ızgara manipülasyonunu sınırlayarak ızgara hasarını azaltmak için yakın zamanda kullanılmıştır12.
Bu protokolün, kriyotomografi uygulaması için hücrelerden ince kenarları ve çıkıntıları görüntülemek için optimize edildiğine dikkat etmek önemli olabilir. Tercih edilen aşağı akış uygulamaları için en iyi sonucu bulmak için protokoldeki önerilerimizden çeşitli koşullarda sorun gidermenizi öneririz. Genel olarak, bu protokol, hücreleri belirli ihtiyaçlar için ayarlanabilen ızgaralara tohumlamak için güvenilir ancak çok yönlü bir yöntem sağlar.
The authors have nothing to disclose.
Daldırmalı dondurma ekipmanına erişim için Mansky laboratuvarına teşekkür ederiz. Bu çalışmanın bir kısmı, Malzeme Araştırma Bilim ve Mühendislik Merkezi (MRSEC; Ödül Numarası DMR-2011401) ve Ulusal Sinirbilim Müfredat Girişimi (NNCI; Ödül Numarası ECCS-2025124) programlarında yer almaktadır. Viral Ortamlarda HIV Davranışı merkezi (B-HIVE; 1U54AI170855-01) ve Duke HIV Yapısal Biyoloji Merkezi’nden (DCHSB; U54AI170752) merkezi.
10 nm colloidal gold bead solution | Sigma-Aldrich | 741957 | |
6 well multidish, 100/CS | Fisher Scientific | FB012927 | |
Allegra V-15R Benchtop Centrifuge, IVD 120 V 60 Hz | Beckman-Coulter | C63125 | |
Au G300F1 with R2/2 Quantifoil carbon | Quantifoil | TEM-G300F1-AU | |
Bovine serum albumin | MilliporeSigma | A9647 | |
BRAND counting chamber BLAUBRAND Neubauer improved | Sigma-Aldrich | BR717805-1EA | |
DMi1 Inverted Microscope | Leica | 22A00G119 | |
Dulbecco's modified eagle's medium – high glucose, no glutamine | Gibco | 11-960-044 | |
Dumont 5/15 tweezer | Electron Microscopy Sciences | 0103-5/15-PO | |
EM GP2 | Leica | 587085 | Automated plunge freezer |
Fetal Bovine Serum | Gibco | A5209 | |
Fibronectin from bovine plasma, cell culture grade | MilliporeSigma | F1141 | |
GenJet version II in vitro DNA transfection reagent | SignaGen Laboratories | SL100489 | |
GlutaMAX I 100x | Fisher Scientific | 35050061 | Media supplement |
Neslab EX-211 Heating Circulator | Neslab | Out of production | Water bath for media warming |
Original Portable Pipet-Aid Pipette Controller | Drummond Scientific | 4-000-100 | |
PBS, pH 7.4 | Gibco | 10010023 | |
Pelco easyGlow device | Pelco | 91000S | Glow discharge device |
Penicillin-Streptomycin | Sigma-Aldrich | P0781 | Media supplement |
Pipetman P1000, 100–1000 µL, Metal Ejector | Gilson | F144059M | |
Pipetman P2, 0.2–2 µL, Metal Ejector | Gilson | F144054M | |
Pipetman P20, 2–20 µL, Metal Ejector | Gilson | F144056M | |
Whatman number 2 filter paper, 55 mm | Whatman | 28455-041 | Blotting paper |