Постсинтетический лигандный обмен (PSE) является универсальным и мощным инструментом для установки функциональных групп в металлоорганические каркасы (MOF). Воздействие MOF растворов, содержащих триазол- и тетразол-функционализированные лиганды, может включать эти гетероциклические фрагменты в Zr-MOF с помощью процессов PSE.
Металлоорганические каркасы (MOF) представляют собой класс пористых материалов, которые образуются за счет координационных связей между кластерами металлов и органическими лигандами. Учитывая их координационную природу, органические лиганды и каркас распорок могут быть легко удалены из MOF и/или заменены другими координирующими молекулами. Вводя целевые лиганды в растворы, содержащие MOF, функционализированные MOF могут быть получены с новыми химическими метками с помощью процесса, называемого постсинтетическим обменом лигандов (PSE). PSE — это простой и практичный подход, который позволяет получать широкий спектр MOF с новыми химическими метками с помощью процесса равновесия твердого раствора. Кроме того, PSE можно проводить при комнатной температуре, что позволяет включать термически нестабильные лиганды в MOF. В этой работе мы демонстрируем практичность PSE с использованием гетероциклических триазол- и тетразолсодержащих лигандов для функционализации MOF на основе Zr (UiO-66; UiO = Университет Осло). После разложения функционализированные MOF характеризуются с помощью различных методов, включая порошковую рентгеновскую дифракцию и спектроскопию ядерного магнитного резонанса.
Металлоорганические каркасы (MOF) представляют собой трехмерные пористые материалы, которые образуются за счет координационных связей между кластерами металлов и многопрофильными органическими лигандами. MOF привлекли значительное внимание из-за их постоянной пористости, низкой плотности и способности связывать органические и неорганические компоненты, что обеспечивает разнообразное применение 1,2. Кроме того, широкий ассортимент металлических узлов и органических линкеров стоек предлагает MOF теоретически неограниченные структурные комбинации. Даже при идентичных структурах каркаса физические и химические свойства MOF могут быть изменены путем функционализации лигандов с помощью химических меток. Этот процесс модификации предлагает многообещающий способ адаптировать свойства MOF для конкретных применений 3,4,5,6,7,8,9.
Как префункционализация лигандов до синтеза MOF, так и постсинтетическая модификация (PSM) MOF были использованы для введения и/или модификации функциональных групп в лигандахMOF 10,11. В частности, ковалентные PSM были тщательно изучены для введения новых функциональных групп и создания ряда MOF с различными функциональными возможностями12,13,14. Например, UiO-66-NH2 может быть преобразован в амид-функционализированные UiO-66-AM с различной длиной цепи (от самого короткого ацетамида до самого длинного н-гексиламида) посредством реакций ацилирования с соответствующими ацилгалогенидами (такими как ацетилхлорид или н-гексаноилхлорид)15,16. Этот подход демонстрирует универсальность ковалентных ПСМ для введения определенных функциональных групп в лиганды MOF, прокладывая путь для широкого спектра применений.
В дополнение к ковалентным PSM, постсинтетический лигандный обмен (PSE) является перспективной стратегией модификации MOF (рис. 1). Поскольку MOF состоят из координационных связей между металлами и лигандами (такими как карбоксилаты), эти координационные связи могут быть заменены внешними лигандами из раствора. Воздействие MOF раствором, содержащим желаемый лиганд с химическими метками, может быть включено в MOF через PSE 17,18,19,20,21,22. Поскольку процесс PSE ускоряется существованием координационных растворителей, это явление также называют обменом лигандов с помощью растворителя (SALE)23,24. Этот подход предлагает гибкий и простой метод функционализации MOF с широким спектром внешних лигандов, что обеспечивает широкий спектр применений 25,26,27,28,29.
Рисунок 1: Синтез триазольных и тетразол-функционализированных лигандов H2BDC и получение триазол- и тетразол-функционализированного UiO-66 MOF через PSE. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Ход процесса PSE можно контролировать, регулируя соотношение лигандов, температуру обмена и время. В частности, PSE при комнатной температуре может быть использован для получения функционализированных MOF путем обмена лигандов из раствора в твердые веществаMOF 20. Стратегия PSE особенно полезна для введения как термически нестабильных функциональных групп (таких как азидогруппы), так и координационных функциональных групп (таких как фенольные группы) в MOF-структуры18. Кроме того, стратегия PSE была применена к различным MOF с вариациями металла и координационной связи. Этот обмен является универсальным процессом в химии MOF30,31,32. В этом исследовании мы представляем подробный протокол для PSE для получения функционализированных MOF из нетронутых, нефункционализированных MOF, и мы предлагаем стратегию характеристики для подтверждения успешной функционализации MOF. Этот метод демонстрирует универсальность и удобство PSE для модификации MOF с различными функциональными группами.
Тетразолсодержащая бензол-1,4-дикарбоновая кислота (H 2 BDC-тетразол)33 и триазолсодержащая бензол-1,4-дикарбоновая кислота (H2BDC-триазол) синтезируются в качестве целевых лигандов и используются в PSE MOF UiO-66 для получения новых, не требующих координации, триазолсодержащих MOF. Как триазолы, так и тетразолы обладают кислыми протонами N-H на своих гетероциклических кольцах и могут координироваться с катионами металлов, что позволяет использовать их при построении MOF34,35. Тем не менее, существуют ограниченные исследования по включению свободных от координации тетразолов и триазолов в MOF и связанные с ними структуры. В случае триазол-функционализированных Zr-MOF MOF типа UiO-68 исследовали фотофизические свойства путем прямого сольвотермического синтеза с функциональностью бензотриазола36. Для тетразоль-функционализированных Zr-MOF использовали смешанный прямой синтез33. Эти функционализированные гетероциклом MOF могут обеспечить потенциальные координирующие сайты в порах MOF для катализа, селективного молекулярного поглощения за счет аффинности связывания и приложений, связанных с энергией, таких как протонная проводимость в топливных элементах.
Процесс PSE с функционализированными лигандами BDC по отношению к MOF UiO-66 на основе Zr представляет собой простой и универсальный метод получения MOF с химическими метками. Процесс PSE лучше всего проводить в водных средах, требуя начального этапа сольватации лиганда в водной среде. При исполь…
The authors have nothing to disclose.
Это исследование было поддержано Программой фундаментальных научных исследований через Национальный исследовательский фонд Кореи (NRF), финансируемый Министерством науки и ИКТ (NRF-2022R1A2C1009706).
2-Bromoterephthalic acid | BLD Pharm | BD5695 | reagent for BDC-Triazole |
Azidotrimethylsilane | Simga Aldrich | 155071 | reagent for BDC-Triazole |
Bis(triphenylphosphine)palladium(II) dichloride | TCI | B1667 | reagent for BDC-Triazole |
Copper(I) cyanide | Alfa-Aesar | 12135 | reagent for BDC-Tetrazole |
Copper(I) iodide | Acros organics | 20150 | reagent for BDC-Triazole |
Digital Orbital Shaker | Daihan Scientific | SHO-1D | PSE |
Formic Acid | Daejung chemical | F0195 | reagent for BDC-Tetrazole |
Hybrid LC/Q-TOF system | Bruker BioSciences | maXis 4G | HR-MS |
Lithum hydroxide monohydrate | Daejung chemical | 5087-4405 | reagent for BDC-Triazole |
Magnesium sulfate | Samchun chemical | M1807 | reagent for BDC-Triazole |
Methyl alcohol | Daejung chemical | M0584 | reagent for BDC-Tetrazole |
N,N-Dimethylformamide | Daejung chemical | D0552 | reagent for BDC-Tetrazole |
Nuclear Magnetic Resonance Spectrometer-500 MHz | Bruker | AVANCE 500MHz | NMR |
Polypropylene cap (22 mm, Cork-Backed Foil Lined) | Sungho Korea | 22-200 | material for digestion |
Potassium cyanide | Alfa-Aesar | L13273 | reagent for BDC-Tetrazole |
PVDF Synringe filter (13 mm, 0.45 µm) | LK Lab Korea | F14-61-363 | material for digestion |
Scintillation vial (20 mL, borosilicate glass) | Sungho Korea | 74504-20 | material for digestion |
Sodium azide | TCI | S0489 | reagent for BDC-Tetrazole |
Sodium bicarbonate | Samchun chemical | S0343 | reagent for BDC-Triazole |
Tetrabutylammonium fluoride (1 M THF solution) | Acros organics | 20195 | reagent for BDC-Triazole |
Triethylamine | TCI | T0424 | reagent for BDC-Triazole |
Triethylamine hydrochloride | Daejung chemical | 8628-4405 | reagent for BDC-Tetrazole |
Trimethylsilyl-acetylene | Alfa-Aesar | A12856 | reagent for BDC-Triazole |
Triphenylphosphine | TCI | T0519 | reagent for BDC-Triazole |
X RAY DIFFRACTOMETER SYSTEM | Rigaku | MiniFlex 600 | PXRD |
Zirconium(IV) chloride | Alfa-Aesar | 12104 | reagent for BDC-Tetrazole |