Summary

用表面增强拉曼散射光谱和显微镜跟踪单个纳米颗粒的电化学

Published: May 12, 2023
doi:

Summary

该协议描述了如何使用表面增强拉曼散射光谱和成像来监测单个纳米颗粒上的电化学事件。

Abstract

研究单个纳米颗粒的电化学反应对于了解单个纳米颗粒的异相性能非常重要。这种纳米级异质性在纳米颗粒的集合平均表征过程中仍然隐藏。已经开发了电化学技术来测量来自单个纳米颗粒的电流,但不提供有关在电极表面发生反应的分子的结构和身份的信息。表面增强拉曼散射(SERS)显微镜和光谱学等光学技术可以检测单个纳米颗粒上的电化学事件,同时提供有关电极表面物种振动模式的信息。本文展示了一种使用SERS显微镜和光谱学跟踪尼罗河蓝(NB)在单个银纳米颗粒上的电化学氧化还原的方案。首先,描述了在光滑和半透明的Ag薄膜上制造Ag纳米颗粒的详细协议。在单个Ag纳米颗粒和Ag薄膜之间形成沿光轴排列的偶极等离激元模式。固定在纳米颗粒和薄膜之间的NB发射的SERS发射耦合到等离激元模式中,高角度发射被显微镜物镜收集,形成甜甜圈状发射图案。这些甜甜圈形的SERS发射模式允许明确识别基板上的单个纳米颗粒,从中可以收集SERS光谱。在这项工作中,提供了一种在与倒置光学显微镜兼容的电化学电池中采用SERS衬底作为工作电极的方法。最后,显示了跟踪单个Ag纳米颗粒上NB分子的电化学氧化还原。可以修改此处描述的设置和协议以研究单个纳米颗粒上的各种电化学反应。

Introduction

电化学是研究电荷转移、电荷存储、质量传递等的重要测量科学,应用于生物学、化学、物理学和工程学等多个学科 1,2,3,4,5,6,7 .传统上,电化学涉及对集合的测量 – 单个实体的大量集合,如分子,晶体结构域,纳米颗粒和表面位点。然而,由于复杂电化学环境中电极表面的异质性,理解这些单一实体如何贡献集成平均响应是化学和相关领域带来新的基本和机理理解的关键8,9。例如,集成还原揭示了位点特异性还原/氧化电位10,中间体和次要催化产物的形成11,位点特异性反应动力学12,13和电荷载流子动力学14,15减少集成平均对于提高我们对模型系统以外的应用系统的理解尤为重要,例如生物细胞、电催化和电池,其中经常发现广泛的异质性 16,17,18,19,20,21,22。

在过去十年左右的时间里,出现了研究单实体电化学1,2,9,10,11,12的技术。这些电化学测量提供了测量几个系统中小电流和离子电流的能力,并揭示了新的基本化学和物理特性23,24,25,26,27,28。然而,电化学测量不能提供关于电极表面29,30,31,32处分子或中间体的身份或结构的信息。电极-电解质界面处的化学信息是理解电化学反应的核心。界面化学知识通常是通过将电化学与光谱学31,32耦合获得的。振动光谱,如拉曼散射,非常适合提供有关电化学系统中电荷转移和相关事件的补充化学信息,这些系统主要使用但不限于水性溶剂30。与显微镜相结合,拉曼散射光谱提供低至光的衍射极限的空间分辨率33,34。然而,衍射存在局限性,因为纳米颗粒和活性表面位点的长度小于光学衍射极限,因此排除了对单个实体的研究35

表面增强拉曼散射(SERS)已被证明是研究电化学反应界面化学的有力工具20,30,36,37,38。除了提供反应物分子、溶剂分子、添加剂和电极表面化学的振动模式外,SERS还提供定位于支持集体表面电子振荡的材料表面的信号,称为局部表面等离子体共振。等离激元共振的激发导致电磁辐射集中在金属表面,从而增加光通量和表面吸附物的拉曼散射。纳米结构贵金属如Ag和Au是常用的等离子体材料,因为它们支持可见光等离激元共振,这对于使用高灵敏度和高效的电荷耦合器件检测发射是理想的。尽管SERS的最大增强来自纳米颗粒39,40的聚集体,但已经开发了一种新的SERS衬底,允许从单个纳米颗粒进行SERS测量:间隙模式SERS衬底(图141,42在间隙模式SERS基板中,制造金属镜并涂有分析物。接下来,纳米颗粒分散在基板上。当用圆偏振激光照射时,激发由纳米颗粒和基板耦合形成的偶极等离激元共振,从而能够对单个纳米颗粒进行SERS测量。SERS发射耦合到偶极等离激元共振43,44,45后者沿光轴定向。通过辐射电偶极子和收集光学器件的平行对准,仅收集高角度发射,从而形成不同的甜甜圈形发射模式46,47,48,49,并允许识别单个纳米颗粒。衬底上的纳米颗粒聚集体含有不平行于光轴50的辐射偶极子。在后一种情况下,收集低角度和高角度发射并形成固体发射模式46

在这里,我们描述了一种用于制造间隙模式SERS衬底的协议,以及将它们用作工作电极以使用SERS监测单个Ag纳米颗粒上的电化学氧化还原事件的程序。重要的是,使用间隙模式SERS衬底的协议允许通过SERS成像明确识别单个纳米颗粒,这是当前单纳米颗粒电化学方法的关键挑战。作为一个模型系统,我们演示了使用SERS来提供由扫描或阶梯电位(即循环伏安法,计时安培法)驱动的单个Ag纳米颗粒上尼罗河蓝A(NB)的电化学还原和氧化读数。NB经历多质子,多电子还原/氧化反应,其中其电子结构被调制出激发源/与激发源共振,这在相应的SERS光谱10,51,52中提供了对比度。此处描述的协议也适用于非共振氧化还原活性分子和电化学技术,这可能与电催化等应用有关。

Protocol

1. 间隙模式SERS底物制备 使用丙酮和水洗清洁1号盖玻片(见 材料表),如下所述。在洁净室中执行此步骤,以确保没有碎屑或其他不需要的物质沉积到盖玻片上。将盖玻片放在载玻片架中。移动盖玻片/基材时使用镊子。将载玻片架放入玻璃容器中,并用丙酮填充。注意:丙酮高度易燃,对健康有潜在的负面影响。使用手套、护目镜和口罩在通风良好的地…

Representative Results

图2A 显示了使用电子束金属沉积系统制备的Ag薄膜基板。 图2A 所示的“好”基板在玻璃盖玻片上具有均匀的Ag金属覆盖率,而“坏”基板具有不均匀的Ag覆盖率。“好”Ag薄膜的紫外-可见光谱如图 2B所示,这表明该薄膜对于电磁光谱的可见部分是部分透明的。对于当前协议中用于光谱电化学实验的642 nm激光,“良好”Ag薄膜衬底的?…

Discussion

在干净的盖玻片上沉积Cu和Ag薄膜对于确保最终薄膜的粗糙度不超过两到四个原子层(或均方根粗糙度小于或等于约0.7nm)至关重要。在金属沉积之前,盖玻片上存在的灰尘、划痕和碎屑是阻碍制造产生甜甜圈形发射模式所需的光滑薄膜的常见问题。因此,建议在金属沉积之前用不同的溶剂对盖玻片进行超声处理,如果可能的话,在洁净室中进行此过程。此外,应特别注意沉积程序。可能需要清洁?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了路易斯维尔大学的启动资金和橡树岭联合大学通过Ralph E. Powe初级教师增强奖提供的资金支持。作者感谢Ki-Hyun Cho博士创建 图1中的图像。金属沉积和SEM在路易斯维尔大学的微/纳米技术中心进行。

Materials

Acetone, microelectronic grade J. T. Baker 9005-05
Adjustable pipette, Eppendorf Reference 2 5000 mL Eppendorf 4924000100
Analytical Balance, AB54-S/FACT Metter Toledo N.A.
Atomic Force Microscope, Easy scan 2 Nanosurf N.A.
AXXIS Electron Beam Thin Film Deposition System Kurt J. Lesker N.A.
Cary 60 UV-Vis Spectrophotometer Agilent N.A.
Conductive epoxy, two part Electron Microscopy Sciences 12642-14
Copper pellets, 99.99% pure Kurt J. Lesker EVMCU40EXE
Copper wire, bare, 18 AWG VWR 66248-040
Crucible, Graphite E-Beam Kurt J. Lesker EVCEB-23
Diamond Scriber Ted Pella 54484
EMCCD Camera, ProEM HS: 1024BX3 Teledyne Princeton Instruments N.A.
Epoxy, Clear Gorilla Glue N.A.
Glass Tube Cutter Wheeler-Rex 69012
Glass Tube, Borossilicate (OD 0.75", ID 0.62", L 12") McMaster-Carr 8729K45
Immersion oil, Type-F Olympus IMMOIL-F30CC
Inverted Microscope, IX73 Olympus N.A.
Laser, Excelsior One 642 nm Free space Spectra-Physics N.A.
LightField Teledyne Princeton Instruments N.A.
MATLAB 2022b MathWorks N.A.
Micro cover glass (coverslips), 24×60 mm No. 1 VWR 48404-455
Microscope Smartphone Camera Adapter qhma QHMC017A-S01
Nile Blue A, pure Acros Organics 415690100
Nitrogen, Ultra Pure, Compressed Specialty Gases N.A.
Objective, UPLanXApo 100× Oil Immersion Olympus 14-910
Polyimide Film, Kapton 3M 16089-4
Potassium Phosphate Monobasic VWR P285
Potentiostat, 660E  CH Instruments N.A.
Pt wire Alfa Aesar 10956-BS
Scanning Electron Microscope, Apreo C SEM Thermo Fischer Scientific N.A.
Si wafer Ted Pella 16006
Silver nanoparticles (nanospheres), NanoXact 0.02 mg/mL in 2 mM citrate nanoComposix AGCN60
Silver pellets, 99.99% pure Kurt J. Lesker EVMAG40EXE-A
Slide Rack, Wash-N-Dry Diversified Biotech WSDR-2000
Smartphone, iPhone 13 mini Apple N.A.
Sodium Phosphate Dibasic Heptahydrate VWR 0348
Spectrometer, IsoPlane SCT320 Teledyne Princeton Instruments N.A.
Tissue Wipers, Light-duty  VWR 82003-820
Tweezers, KS-04 Kaisi Hardware N.A.
Utrasonic Generator, sweepSONIK Blackstone-NEY Ultrasonics 809379
Water Ultrapurifier, Sartorius Arium mini Sartorius N.A.

Riferimenti

  1. O’Mari, O., Vullev, V. I. Electrochemical analysis in charge-transfer science: The devil in the details. Current Opinion in Electrochemistry. 31, 100862 (2022).
  2. Forster, R. J. Microelectrodes: New dimensions in electrochemistry. Chemical Society Reviews. 23 (4), 289-297 (1994).
  3. Frackowiak, E., Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 39 (6), 937-950 (2001).
  4. Bard, A. J., Faulkner, L. R. . Electrochemical Methods: Fundamentals and Applications. , (2001).
  5. Gerischer, H. The impact of semiconductors on the concepts of electrochemistry. Electrochimica Acta. 35 (11), 1677-1699 (1990).
  6. Savéant, J. -. M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chemical Reviews. 108 (7), 2348-2378 (2008).
  7. Maduraiveeran, G., Sasidharan, M., Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics. 103, 113-129 (2018).
  8. Baker, L. A. Perspective and prospectus on single-entity electrochemistry. Journal of the American Chemical Society. 140 (46), 15549-15559 (2018).
  9. Wang, Y., Shan, X., Tao, N. Emerging tools for studying single entity electrochemistry. Faraday Discussions. 193, 9-39 (2016).
  10. Wilson, A. J., Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Letters. 14 (2), 939-945 (2014).
  11. Devasia, D., Wilson, A. J., Heo, J., Mohan, V., Jain, P. K. A rich catalog of C-C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nature Communications. 12 (1), 2612 (2021).
  12. Sambur, J. B., et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature. 530 (7588), 77-80 (2016).
  13. Sambur, J. B., Chen, P. Approaches to single-nanoparticle catalysis. Annual Review of Physical Chemistry. 65 (1), 395-422 (2014).
  14. Sambur, J. B., Chen, P. Distinguishing direct and indirect photoelectrocatalytic oxidation mechanisms using quantitative single-molecule reaction imaging and photocurrent measurements. The Journal of Physical Chemistry C. 120 (37), 20668-20676 (2016).
  15. Wang, L., Tahir, M., Chen, H., Sambur, J. B. Probing charge carrier transport and recombination pathways in monolayer MoS2/WS2 heterojunction photoelectrodes. Nano Letters. 19 (12), 9084-9094 (2019).
  16. Rubin, H. The significance of biological heterogeneity. Cancer and Metastasis Reviews. 9 (1), 1-20 (1990).
  17. Altschuler, S. J., Wu, L. F. Cellular heterogeneity: Do differences make a difference. Cell. 141 (4), 559-563 (2010).
  18. Guerrette, J. P., Percival, S. J., Zhang, B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. Journal of the American Chemical Society. 135 (2), 855-861 (2013).
  19. Chen, Y., et al. In situ imaging facet-induced spatial heterogeneity of electrocatalytic reaction activity at the subparticle level via electrochemiluminescence microscopy. Analytical Chemistry. 91 (10), 6829-6835 (2019).
  20. Zaleski, S., et al. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Accounts of Chemical Research. 49 (9), 2023-2030 (2016).
  21. Xu, R., et al. Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling. Journal of the Mechanics and Physics of Solids. 129, 160-183 (2019).
  22. Liu, H., et al. Quantifying reaction and rate heterogeneity in battery electrodes in 3D through operando X-ray diffraction computed tomography. ACS Applied Materials & Interfaces. 11 (20), 18386-18394 (2019).
  23. Heinze, J. Ultramicroelectrodes in electrochemistry. Angewandte Chemie International Edition in English. 32 (9), 1268-1288 (1993).
  24. Arrigan, D. W. M. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 129 (12), 1157-1165 (2004).
  25. Grall, S., et al. Attoampere nanoelectrochemistry. Small. 17 (29), 2101253 (2021).
  26. Sa, N., Lan, W. -. J., Shi, W., Baker, L. A. Rectification of ion current in nanopipettes by external substrates. ACS Nano. 7 (12), 11272-11282 (2013).
  27. Zhu, C., Huang, K., Siepser, N. P., Baker, L. A. Scanning ion conductance microscopy. Chemical Reviews. 121 (19), 11726-11768 (2021).
  28. Fu, K., Kwon, S. -. R., Han, D., Bohn, P. W. Single entity electrochemistry in nanopore electrode arrays: Ion transport meets electron transfer in confined geometries. Accounts of Chemical Research. 53 (4), 719-728 (2020).
  29. Iwasita, T., Nart, F. C., Rodes, A., Pastor, E., Weber, M. Vibrational spectroscopy at the electrochemical interface. Surface Structure and Electrochemical Reactivity. 40 (1), 53-59 (1995).
  30. Joshi, P. B., Wilson, A. J. Understanding electrocatalysis at nanoscale electrodes and single atoms with operando vibrational spectroscopy. Current Opinion in Green and Sustainable Chemistry. 38, 100682 (2022).
  31. Kaim, W., Fiedler, J. Spectroelectrochemistry: The best of two worlds. Chemical Society Reviews. 38 (12), 3373-3382 (2009).
  32. Zhai, Y., Zhu, Z., Zhou, S., Zhu, C., Dong, S. Recent advances in spectroelectrochemistry. Nanoscale. 10 (7), 3089-3111 (2018).
  33. Zheng, X., Zong, C., Xu, M., Wang, X., Ren, B. Raman imaging from microscopy to nanoscopy, and to macroscopy. Small. 11 (28), 3395-3406 (2015).
  34. Opilik, L., Schmid, T., Zenobi, R. Modern Raman imaging: Vibrational spectroscopy on the micrometer and nanometer scales. Annual Review of Analytical Chemistry. 6 (1), 379-398 (2013).
  35. Wilson, A. J., Devasia, D., Jain, P. K. Nanoscale optical imaging in chemistry. Chemical Society Reviews. 49 (16), 6087-6112 (2020).
  36. Willets, K. A. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Current Opinion in Electrochemistry. 13, 18-24 (2019).
  37. Tian, Z. -. Q., Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annual Review of Physical Chemistry. 55 (1), 197-229 (2004).
  38. Wu, D. -. Y., Li, J. -. F., Ren, B., Tian, Z. -. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews. 37 (5), 1025-1041 (2008).
  39. Bosnick Jiang, K., Maillard, M., Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. The Journal of Physical Chemistry B. 107 (37), 9964-9972 (2003).
  40. Camden, J. P., et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society. 130 (38), 12616-12617 (2008).
  41. Daniels, J. K., Chumanov, G. Nanoparticle−mirror sandwich substrates for surface-enhanced Raman scattering. The Journal of Physical Chemistry B. 109 (38), 17936-17942 (2005).
  42. Ciracì, C., et al. Probing the ultimate limits of plasmonic enhancement. Science. 337 (6098), 1072-1074 (2012).
  43. Ausman, L. K., Schatz, G. C. On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. The Journal of Chemical Physics. 131 (8), 084708 (2009).
  44. Stranahan, S. M., Willets, K. A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Letters. 10 (9), 3777-3784 (2010).
  45. Titus, E. J., Weber, M. L., Stranahan, S. M., Willets, K. A. Super-resolution SERS imaging beyond the single-molecule limit: An isotope-edited approach. Nano Letters. 12 (10), 5103-5110 (2012).
  46. Bartko, A. P., Dickson, R. M. Imaging three-dimensional single molecule orientations. The Journal of Physical Chemistry B. 103 (51), 11237-11241 (1999).
  47. Chen, S. -. Y., et al. Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano. 4 (11), 6535-6546 (2010).
  48. Du, L., Tang, D., Yuan, G., Wei, S., Yuan, X. Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction. Applied Physics Letters. 102 (8), 081117 (2013).
  49. Joshi, P. B., Anthony, T. P., Wilson, A. J., Willets, K. A. Imaging out-of-plane polarized emission patterns on gap mode SERS substrates: From high molecular coverage to the single molecule regime. Faraday Discussions. 205, 245-259 (2017).
  50. Stranahan, S. M., Titus, E. J., Willets, K. A. SERS orientational imaging of silver nanoparticle dimers. The Journal of Physical Chemistry Letters. 2 (21), 2711-2715 (2011).
  51. Cortés, E., et al. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society. 132 (51), 18034-18037 (2010).
  52. Wilson, A. J., Molina, N. Y., Willets, K. A. Modification of the electrochemical properties of Nile Blue through covalent attachment to gold as revealed by electrochemistry and SERS. The Journal of Physical Chemistry C. 120 (37), 21091-21098 (2016).
  53. E-beam evaporator SOP. Micro/Nano Technology Center, University of Louisville Available from: https://louisville.edu/micronano/files/documents/standard-operating-procedures/Ebaeam_SOP.pdf (2020)
  54. FEI Apreo C SEM SOP. Micro/Nano Technology Center, University of Louisville Available from: https://louisville.edu/micronano/files/documents/standard-operating-procedures/ApreoSEMSOPn.pdf (2023)
  55. Benz, F., et al. SERS of individual nanoparticles on a mirror: Size does matter, but so does shape. The Journal of Physical Chemistry Letters. 7 (12), 2264-2269 (2016).
  56. Sundaresan, V., Monaghan, J. W., Willets, K. A. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. The Journal of Physical Chemistry C. 122 (5), 3138-3145 (2018).
  57. Wilson, A. J., Mohan, V., Jain, P. K. Mechanistic understanding of plasmon-enhanced electrochemistry. The Journal of Physical Chemistry C. 123 (48), 29360-29369 (2019).
  58. Wilson, A. J., Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Accounts of Chemical Research. 53 (9), 1773-1781 (2020).
  59. Wang, J., Heo, J., Chen, C., Wilson, A. J., Jain, P. K. Ammonia oxidation enhanced by photopotential generated by plasmonic excitation of a bimetallic electrocatalyst. Angewandte Chemie International Edition. 59 (42), 18430-18434 (2020).
  60. Joshi, P. B., Wilson, A. J. Plasmonically enhanced electrochemistry boosted by nonaqueous solvent. The Journal of Chemical Physics. 156 (24), 241101 (2022).
  61. Xiao, X., Fan, F. -. R. F., Zhou, J., Bard, A. J. Current transients in single nanoparticle collision events. Journal of the American Chemical Society. 130 (49), 16669-16677 (2008).
  62. Kwon, S. J., et al. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments. Physical Chemistry Chemical Physics. 13 (12), 5394-5402 (2011).
  63. Anderson, T. J., Zhang, B. Single-nanoparticle electrochemistry through immobilization and collision. Accounts of Chemical Research. 49 (11), 2625-2631 (2016).
  64. Sun, T., Yu, Y., Zacher, B. J., Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angewandte Chemie International Edition. 53 (51), 14120-14123 (2014).
  65. Yu, Y., Sun, T., Mirkin, M. V. Scanning electrochemical microscopy of single spherical nanoparticles: Theory and particle size evaluation. Analytical Chemistry. 87 (14), 7446-7453 (2015).
  66. Yu, Y., et al. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes. ChemElectroChem. 2 (1), 58-63 (2015).
  67. Bentley, C. L., Kang, M., Unwin, P. R. Nanoscale structure dynamics within electrocatalytic materials. Journal of the American Chemical Society. 139 (46), 16813-16821 (2017).
  68. Wahab, O. J., Kang, M., Unwin, P. R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry. Current Opinion in Electrochemistry. 22, 120-128 (2020).
  69. Bentley, C. L., et al. Local surface structure and composition control the hydrogen evolution reaction on iron nickel sulfides. Angewandte Chemie International Edition. 57 (15), 4093-4097 (2018).
  70. Wright, D., et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nature Catalysis. 4 (2), 157-163 (2021).
  71. Peng, J., et al. In-situ spectro-electrochemistry of conductive polymers using plasmonics to reveal doping mechanisms. ACS Nano. 16 (12), 21120-21128 (2022).
  72. Yan, M., Kawamata, Y., Baran, P. S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chemical Reviews. 117 (21), 13230-13319 (2017).
  73. Kingston, C., et al. A survival guide for the "electro-curious.&#34. Accounts of Chemical Research. 53 (1), 72-83 (2020).
  74. Patrice, F. T., Qiu, K., Ying, Y. -. L., Long, Y. -. T. Single nanoparticle electrochemistry. Annual Review of Analytical Chemistry. 12 (1), 347-370 (2019).
  75. Sekretareva, A. Single-entity electrochemistry of collision in sensing applications. Sensors and Actuators Reports. 3, 100037 (2021).

Play Video

Citazione di questo articolo
Hemmer, J. V., Joshi, P. B., Wilson, A. J. Tracking Electrochemistry on Single Nanoparticles with Surface-Enhanced Raman Scattering Spectroscopy and Microscopy. J. Vis. Exp. (195), e65486, doi:10.3791/65486 (2023).

View Video