Die Elektroporation von Hirnorganoiden von Primaten bietet einen präzisen und effizienten Ansatz, um transiente genetische Modifikationen in verschiedene Vorläufertypen und Neuronen in einem Modellsystem einzuführen, das der (patho)physiologischen Neokortexentwicklung von Primaten nahe kommt. Dies ermöglicht die Untersuchung neurologischer Entwicklungs- und Evolutionsprozesse und kann auch für die Modellierung von Krankheiten eingesetzt werden.
Die Großhirnrinde ist die äußerste Hirnstruktur und für die Verarbeitung von sensorischen und motorischen Inputs verantwortlich. Es gilt als Sitz der kognitiven Fähigkeiten höherer Ordnung bei Säugetieren, insbesondere bei Primaten. Die Untersuchung von Genfunktionen in Primatengehirnen ist aus technischen und ethischen Gründen eine Herausforderung, aber die Etablierung der Gehirnorganoid-Technologie hat die Untersuchung der Gehirnentwicklung in traditionellen Primatenmodellen (z. B. Rhesusaffen und Weißbüschelaffen) sowie in bisher experimentell unzugänglichen Primatenarten (z. B. Menschenaffen) in einem ethisch vertretbaren und technisch weniger anspruchsvollen System ermöglicht. Darüber hinaus ermöglichen menschliche Gehirnorganoide die fortgeschrittene Untersuchung neurologischer Entwicklungsstörungen und neurologischer Störungen.
Da Gehirnorganoide viele Prozesse der Gehirnentwicklung rekapitulieren, stellen sie auch ein leistungsfähiges Werkzeug dar, um Unterschiede in den genetischen Determinanten zu identifizieren und funktionell zu vergleichen, die der Gehirnentwicklung verschiedener Arten in einem evolutionären Kontext zugrunde liegen. Ein großer Vorteil der Verwendung von Organoiden ist die Möglichkeit, genetische Veränderungen einzubringen, die es ermöglichen, Genfunktionen zu testen. Die Einführung solcher Modifikationen ist jedoch mühsam und teuer. Diese Arbeit beschreibt einen schnellen und kostengünstigen Ansatz zur genetischen Veränderung von Zellpopulationen innerhalb der ventrikelartigen Strukturen von Primaten-Hirnorganoiden, einer Subart von Hirnorganoiden. Diese Methode kombiniert ein modifiziertes Protokoll zur zuverlässigen Erzeugung von zerebralen Organoiden aus induzierten pluripotenten Stammzellen (iPS-Zellen) von Menschen, Schimpansen, Rhesusaffen und Weißbüschelaffen mit einem Mikroinjektions- und Elektroporationsansatz. Dies bietet ein effektives Werkzeug für die Untersuchung neurologischer Entwicklungs- und Evolutionsprozesse, das auch für die Modellierung von Krankheiten verwendet werden kann.
Die Untersuchung der (patho)physiologischen Entwicklung und Evolution der Großhirnrinde ist eine gewaltige Aufgabe, die durch den Mangel an geeigneten Modellsystemen erschwert wird. Bisher beschränkten sich solche Studien auf zweidimensionale Zellkulturmodelle (z. B. primäre neuronale Vorläufer- oder neuronale Zellkulturen) und evolutionär entfernte Tiermodelle (z. B. Nagetiere)1,2. Während diese Modelle nützlich sind, um bestimmte Fragen zu beantworten, sind sie bei der Modellierung der Komplexität, der Zelltypzusammensetzung, der zellulären Architektur und der Genexpressionsmuster des sich entwickelnden menschlichen Neokortex in gesunden und kranken Zuständen begrenzt. Diese Einschränkungen führen z.B. zu einer schlechten Übertragbarkeit von Mausmodellen menschlicher Erkrankungen auf die menschliche Situation, wie sie für bestimmte Fälle von Mikrozephalie beschrieben wird (z.B. Zhang et al.3). In jüngster Zeit sind transgene nicht-menschliche Primaten, die evolutionär, funktionell und morphologisch ein näheres Modell der menschlichen Neokortex-Entwicklung darstellen, in den Fokus gerückt 4,5,6,7,8, da sie viele Einschränkungen von Zellkultur- und Nagetiermodellen überwinden. Der Einsatz nichtmenschlicher Primaten in der Forschung ist jedoch nicht nur sehr teuer und zeitaufwändig, sondern wirft auch ethische Bedenken auf. In jüngerer Zeit hat sich die Entwicklung der Gehirnorganoid-Technologie 9,10 als vielversprechende Alternative herausgestellt, die viele der Einschränkungen der Vorgängermodelle 11,12,13,14,15,16 löst.
Hirnorganoide sind dreidimensionale (3D), multizelluläre Strukturen, die die Hauptmerkmale der Zytoarchitektur und Zelltypzusammensetzung einer oder mehrerer Hirnregionen für ein definiertes Entwicklungszeitfenster nachbilden 11,12,13,14,17. Diese 3D-Strukturen werden entweder aus induzierten pluripotenten Stammzellen (iPS-Zellen) oder, falls für die interessierende Spezies verfügbar, aus embryonalen Stammzellen (ES-Zellen) erzeugt. Im Allgemeinen können zwei Arten von Hirnorganoiden aufgrund der verwendeten Methodik unterschieden werden: ungeführte und regionalisierte (geführte) Hirnorganoide18. Bei der Erzeugung der letztgenannten Art von Organoiden werden kleine Moleküle oder Faktoren bereitgestellt, die die Differenzierung der pluripotenten Stammzellen zu Organoiden einer bestimmten Hirnregion (z. B. Vorderhirn-Organoiden) steuern18. Im Gegensatz dazu wird bei ungelenkten Organoiden die Differenzierung nicht durch die Zugabe kleiner Moleküle gesteuert, sondern beruht ausschließlich auf der spontanen Differenzierung der iPSCs/ESCs. Die resultierenden Hirnorganoide bestehen aus Zelltypen, die verschiedene Hirnregionen repräsentieren (z. B. zerebrale Organoide)18. Hirnorganoide kombinieren viele Schlüsselmerkmale der Gehirnentwicklung mit einer relativ kosten- und zeiteffizienten Generierung aus allen Arten von Interesse, für die iPS-Zellen oder ES-Zellen verfügbar sind11,12,13,14. Dies macht Gehirnorganoide zu einem hervorragenden Modell für viele Arten von neurobiologischen Studien, die von evolutionären und entwicklungsbedingten Fragen bis hin zur Modellierung von Krankheiten und Medikamententests reichen15,16. Die Beantwortung solcher Fragen mit Hilfe von Hirnorganoiden hängt jedoch stark von der Verfügbarkeit verschiedener Methoden zur genetischen Veränderung ab.
Ein wichtiger Aspekt bei der Untersuchung der (patho)physiologischen Entwicklung des Neokortex und seiner Evolution ist die funktionelle Analyse von Genen und Genvarianten. Dies wird in der Regel durch (ektopische) Expression und/oder durch Knock-down (KD) oder Knock-out (KO) dieser Gene erreicht. Solche genetischen Modifikationen können in stabile und vorübergehende genetische Modifikationen eingeteilt werden, sowie in die Modifikationen, die zeitlich und räumlich begrenzt oder nicht eingeschränkt sind. Eine stabile genetische Veränderung ist definiert durch die Einbringung einer genetischen Veränderung in das Wirtsgenom, die an alle nachfolgenden Zellgenerationen weitergegeben wird. Je nach Zeitpunkt der genetischen Veränderung kann sie alle Zellen eines Organoids betreffen oder auf bestimmte Zellpopulationen beschränkt sein. Am häufigsten wird eine stabile genetische Modifikation in Hirnorganoiden auf iPSC/ESC-Ebene durch den Einsatz von Lentiviren, Transposon-ähnlichen Systemen und der CRISPR/Cas9-Technologie erreicht (überprüft von z. B. Fischer et al.17, Kyrousi et al.19 und Teriyapirom et al.20). Das hat den Vorteil, dass alle Zellen des Hirnorganoids die genetische Veränderung tragen und diese zeitlich und räumlich nicht eingeschränkt ist. Die Generierung und Charakterisierung dieser stabilen iPSC/ESC-Linien ist jedoch sehr zeitaufwändig und dauert oft mehrere Monate, bis die ersten modifizierten Hirnorganoide analysiert werden können (überprüft von z.B. Fischer et al.17, Kyrousi et al.19 oder Teriyapirom et al.20).
Im Gegensatz dazu wird eine vorübergehende genetische Veränderung durch die Abgabe genetischer Fracht (z. B. eines Genexpressionsplasmids) definiert, die sich nicht in das Wirtsgenom integriert. Während diese Modifikation prinzipiell an nachfolgende Zellgenerationen weitergegeben werden kann, wird die abgegebene genetische Fracht mit jeder Zellteilung schrittweise verdünnt. Daher ist diese Art der genetischen Veränderung in der Regel zeitlich und räumlich begrenzt. Vorübergehende genetische Modifikationen können in Hirnorganoiden durch Adeno-assoziierte Viren oder durch Elektroporation durchgeführt werden (überprüft von z. B. Fischer et al.17, Kyrousi et al.19 und Teriyapirom et al.20), wobei letzteres in diesem Artikel ausführlich beschrieben wird. Im Gegensatz zur stabilen genetischen Veränderung ist dieser Ansatz sehr schnell und kostengünstig. In der Tat kann die Elektroporation innerhalb von Minuten durchgeführt werden, und je nach Zielzellpopulation(en) sind elektroporierte Organoide innerhalb von Tagen bereit für die Analyse (überprüft von z. B. Fischer et al.17 und Kyrousi et al.19). Grobe morphologische Veränderungen des Hirnorganoids, wie z.B. Größenunterschiede, können mit dieser Methode jedoch nicht nachgewiesen werden, da diese Art der genetischen Veränderung zeitlich und räumlich begrenzt ist. Diese Einschränkung kann auch von Vorteil sein, z.B. bei der Untersuchung einzelner Zellpopulationen innerhalb des Organoids oder der Auswirkungen auf Hirnorganoide zu bestimmten Entwicklungszeitpunkten (überprüft z.B. von Fischer et al.17 und Kyrousi et al.19).
Ein klassischer Ansatz zur Untersuchung der Genfunktion während der Entwicklung und Evolution des Gehirns ist die Elektroporation in utero. Die In-utero-Elektroporation ist eine bekannte und nützliche Technik für die Abgabe von Genexpressionskonstrukten in das Gehirn von Nagetieren 21,22,23 und Frettchen24,25. Zunächst wird eine Lösung, die das/die interessierende(n) Expressionskonstrukt(e) enthält, durch die Gebärmutterwand in einen bestimmten Ventrikel des embryonalen Gehirns mikroinjiziert, abhängig von der Region, die anvisiert werden soll. Im zweiten Schritt werden elektrische Impulse angelegt, um die Zellen direkt in den Zielventrikel zu transfizieren. Dieser Ansatz ist nicht nur auf die ektopische Expression oder die Überexpression von Genen beschränkt, sondern kann auch in KD- oder KO-Studien durch Mikroinjektion von kurzer Haarnadel (shRNA) bzw. CRISPR/Cas9 (in Form von Expressionsplasmiden oder Ribonukleoproteinen [RNPs]) angewendet werden26,27. Die In-utero-Elektroporation von Maus-, Ratten- und Frettchenembryonen hat jedoch die gleichen Einschränkungen wie oben für diese Tiermodelle beschrieben.
Idealerweise möchte man die Elektroporation in utero direkt bei Primaten durchführen. Obwohl dies prinzipiell technisch möglich ist, wird die Elektroporation in utero bei Primaten aufgrund ethischer Bedenken, hoher Tierhaltungskosten und kleiner Wurfgrößen nicht durchgeführt. Für bestimmte Primaten, wie z.B. Menschenaffen (einschließlich Menschen), ist dies überhaupt nicht möglich. Diese Primaten haben jedoch das größte Potenzial für die Erforschung der menschlichen (patho)physiologischen Neokortex-Entwicklung und ihrer Evolution. Eine Lösung für dieses Dilemma besteht darin, die Elektroporationstechnik auf Hirnorganoide von Primaten anzuwenden28.
In dieser Arbeit wird ein Protokoll für die Elektroporation eines Subtyps von Primaten-Hirnorganoiden, Primaten-Hirnorganoiden, vorgestellt. Dieser Ansatz ermöglicht die schnelle und kostengünstige genetische Veränderung von Zellpopulationen innerhalb der ventrikelartigen Strukturen der Organoide. Konkret beschreiben wir ein einheitliches Protokoll für die Generierung von Primaten-Hirnorganoiden aus humanen (Homo sapiens), Schimpansen (Pan troglodytes), Rhesusaffen (Macaca mulatta) und Weißbüschelaffen (Callithrix jacchus) iPSCs. Darüber hinaus beschreiben wir die Mikroinjektions- und Elektroporationstechnik im Detail und geben “Go”- und “No-Go”-Kriterien für die Durchführung der zerebralen Organoid-Elektroporation von Primaten an. Dieser Ansatz ist ein effektives Werkzeug, um die (patho)physiologische Entwicklung des Neokortex und seine Evolution in einem Modell zu untersuchen, das der menschlichen Situation besonders nahe kommt.
Die hier beschriebenen Verfahren stellen ein einheitliches Protokoll für die Erzeugung von zerebralen Organoiden aus verschiedenen Primatenarten mit einem gezielten Elektroporationsansatz dar. Dies ermöglicht die ektopische Expression eines GOI in einem Modellsystem, das die (patho)physiologische Neokortexentwicklung von Primaten (einschließlich des Menschen) nachahmt. Dieses einheitliche Protokoll für die Erzeugung von Hirnorganoiden von Primaten verwendet für alle vier vorgestellten Primatenarten die gleichen Mate…
The authors have nothing to disclose.
Wir entschuldigen uns bei allen Forschenden, deren Arbeiten aus Platzgründen nicht zitiert werden konnten. Wir danken Ulrich Bleyer vom Technischen Dienst am DPZ und Hartmut Wolf vom Workshop am MPI-CBG für den Bau der Petrischale-Elektrodenkammern; Stoyan Petkov und Rüdiger Behr für die Bereitstellung von humanen (iLonza2.2), Rhesusaffen (iRh33.1) und Weißbüschelaffen (cj_160419_5) iPSCs; Sabrina Heide für die Kryosektion und Immunfluoreszenzfärbung; und Neringa Liutikaite und César Mateo Bastidas Betancourt für die kritische Lektüre des Manuskripts. Die Arbeit im Labor von W.B.H. wurde durch ein ERA-NET NEURON (MicroKin) Stipendium unterstützt. Die Arbeit im Labor von M.H. wurde durch einen ERC Starting Grant (101039421) unterstützt.
20 µL Microloader | Eppendorf | 5242956003 | |
2-Mercaptoethanol | Merck | 8.05740.0005 | |
35 mm cell culture dishes | Sarstedt | 83.3900 | |
60 mm cell culture dishes | CytoOne | CC7682-3359 | |
Activin A | Sigma-Aldrich | SRP3003 | |
AOC1 | Selleckchem | S7217 | |
Axio Observer.Z1 Inverted Fluorescence Microscope | Zeiss | replacable by comparable fluorescent microscopes | |
AZD0530 | Selleckchem | S1006 | |
B-27 Supplement with Vitamin A (retinoic acid, RA) (50x) | Gibco | 17504-044 | |
B-27 Supplement without Vitamin A (50x) | Gibco | 12587-010 | |
BTX ECM 830 Square Wave Electroporation System | BTX | 45-2052 | |
CGP77675 | Sigma-Aldrich | SML0314 | |
Chimpanzee induced pluripotent stem cell line Sandra A | doi: 10.7554/elife.18683 | ||
Common marmoset induced pluripotent stem cell line cj_160419_5 | doi: 10.3390/cells9112422 | ||
Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) | Gibco | 11320-033 | |
Dulbecco's phosphate-buffered saline (DPBS) | Gibco | 14190-094 | pH 7.0−7.3; warm to room temperature before use |
Fast Green | Sigma-Aldrich | F7252-5G | |
Forskolin | Selleckchem | 2449 | |
GlutaMAX Supplement (100x) | Gibco | 35050-061 | glutamine substitute supplement |
Heparin (1 mg/mL stock) | Sigma-Aldrich | H3149 | |
Human induced pluripotent stem cell line iLonza2.2 | doi: 10.3390/cells9061349 | ||
Human Neurotrophin-3 (NT-3) | PeproTech | 450-03 | |
Insulin | Sigma-Aldrich | 19278 | |
IWR1 | Sigma-Aldrich | I0161 | |
Leica MS5 stereomicroscope (MDG 17 transmitted-light base) | Leica | 10473849 | replacable by comparable stereomicroscopes |
Matrigel | Corning | 354277/354234 | basement membrane matrix; alternatively, Geltrex (ThermoFisher Scientific, A1413302) can be used |
MEM Non-Essential Amino Acids Solution (100x) | Sigma-Aldrich | M7145 | |
N-2 Supplement (100x) | Gibco | 17502-048 | |
Neurobasal medium | Gibco | 21103-049 | |
Parafilm | Sigma-Aldrich | P7793 | |
Paraformaldehyde | Merck | 818715 | handle with causion due to cancerogenecity |
Penicillin/Streptomycin (10,000 U/mL) | PanBiotech | P06-07100 | |
Petri dish electrode chamber | self-produced (see Supplemental File 1) | also commertially available | |
Pre-Pulled Glass Pipettes | WPI | TIP10LT | borosilicate glass pipettes with long taper, 10 µm tip diameter |
Pro-Survival Compound | MerckMillipore | 529659 | |
Recombinant Human/Murine/RatBrain-Derived Neurotrophic Factor (BDNF) | PeproTech | AF-450-02 | |
Rhesus macaque induced pluripotent stem cell line iRh33.1 | doi: 10.3390/cells9061349 | ||
StemMACS iPS-Brew XF | Miltenyi Biotech | 130-104-368 | |
StemPro Accutase Cell Dissociation Reagent | Gibco | A1110501 | proteolytic and collagenolytic enzyme mixture |
TrypLE | Gibco | 12604-013 | recombinant trypsin substitute; warm to room temperature before use |
Ultra-Low Attachment 96-well plates | Costar | 7007 | |
Y27632 | Stemcell Technologies | 72305 |