Burada, nanodiskler içeren biyoaktif ajanların üretimini ve karakterizasyonunu açıklıyoruz. Amfoterisin B nanodiskleri, protokolü aşamalı olarak tanımlamak için örnek olarak alınmıştır.
Nanodisk terimi, çift katmanlı bir lipit, bir iskele proteini ve entegre bir biyoaktif ajandan oluşan ayrı bir nanopartikül tipini ifade eder. Nanodiskler, çevresi genellikle değiştirilebilir apolipoprotein ailesinin bir üyesi olan iskele proteini tarafından çevrelenen disk şeklinde bir lipit çift katmanı olarak düzenlenir. Çok sayıda hidrofobik biyoaktif ajan, parçacığın lipit çift katmanının hidrofobik ortamına entegrasyonlarıyla nanodisklerde verimli bir şekilde çözünür ve çapı 10-20 nm aralığında büyük ölçüde homojen bir parçacık popülasyonu elde edilir. Nanodisklerin formülasyonu, bireysel bileşenlerin kesin bir oranını, her bir bileşenin uygun bir sıralı ilavesini ve ardından formülasyon karışımının banyo sonikasyonunu gerektirir. Amfipatik iskele proteini, ayrık, homojen bir nanodisk parçacıkları popülasyonu oluşturmak için lipit / biyoaktif ajan karışımı oluşturan dağınık çift katmanlı ile kendiliğinden temas eder ve yeniden düzenler. Bu proses sırasında, reaksiyon karışımı opak, bulanık bir görünümden, tamamen optimize edildiğinde santrifüjleme sırasında çökelti vermeyen berraklaştırılmış bir numuneye geçer. Karakterizasyon çalışmaları, biyoaktif madde çözünürlük verimliliği, elektron mikroskobu, jel filtrasyon kromatografisi, ultraviyole görünür (UV / Vis) absorbans spektroskopisi ve / veya floresan spektroskopisinin belirlenmesini içerir. Bunu normalde kültürlenmiş hücreler veya fareler kullanılarak biyolojik aktivitenin araştırılması izler. Bir antibiyotik barındıran nanodiskler (yani, makrolid polien antibiyotik amfoterisin B) durumunda, maya veya mantarların büyümesini konsantrasyon veya zamanın bir fonksiyonu olarak inhibe etme yetenekleri ölçülebilir. Formülasyonun göreceli kolaylığı, bileşen parçalarına göre çok yönlülük, nano ölçekli parçacık boyutu, doğal stabilite ve sulu çözünürlük, nanodisk teknolojisinin sayısız in vitro ve in vivo uygulamasına izin verir. Bu makalede, hidrofobik biyoaktif ajan olarak amfoterisin B içeren nanodiskleri formüle etmek ve karakterize etmek için genel bir metodoloji açıklanmaktadır.
Yeni ortaya çıkan diskoidal yüksek yoğunluklu lipoproteinler (HDL’ler), insan dolaşım sisteminde bulunan çok daha bol küresel HDL’nin doğal olarak oluşan progenitörleridir. Pre-ß HDL olarak da adlandırılan bu yeni ortaya çıkan parçacıklar, benzersiz ve ayırt edici yapısal özelliklere sahiptir1. Aslında, küresel bir parçacık olarak var olmak yerine, yeni ortaya çıkan HDL’ler disk şeklindedir. Doğal ve yeniden yapılandırılmış diskoidal HDL’ler üzerine yapılan kapsamlı yapısal karakterizasyon çalışmaları, çevresi apoA-I gibi bir amfipatik değiştirilebilir apolipoprotein (apo) ile çevrelenmiş bir fosfolipid çift katmandan oluştuğunu ortaya koymuştur. İnsan lipoprotein metabolizmasında, dolaşımdaki yeni ortaya çıkan HDL’ler, periferik hücrelerden lipitler tahakkuk ettirir ve ATP bağlayıcı kaset taşıyıcı A1 ve lesitin: kolesterol asiltransferse2 dahil olmak üzere anahtar protein aracılarına bağlı bir süreçte küresel HDL’lere olgunlaşır. Bu süreç, kalp hastalığına karşı koruyucu olduğu düşünülen ters kolesterol taşıma yolunun kritik bir bileşenini temsil eder. Bu bilgi ve diskoidal HDL’leri yeniden oluşturma yeteneği ile donanmış olan araştırmacılar, bu parçacıkları aterosklerozu tedavi etmek için terapötik bir müdahale olarak kullandılar3. Temel olarak, yeniden yapılandırılmış HDL’nin (rHDL) hastalara infüzyonu, plak birikintilerinden kolesterol efflüksünü teşvik eder ve safra asitlerine dönüşüm ve vücuttan atılım için karaciğere geri döndürür. Birçok biyoteknoloji/ilaç şirketi bu tedavi stratejisini izlemektedir4.
Aynı zamanda, bu parçacıkları laboratuvarda üretme yeteneği, yeni uygulamalara ve yeni teknolojilere yol açan bir araştırma faaliyetleri telaşını tetiklemiştir. Öne çıkan bir uygulama, rHDL parçacıklarının, transmembran proteinlerini doğal benzeri bir ortamda barındırmak için minyatür bir membran olarak kullanılmasını içerir5. Bugüne kadar, yüzlerce protein diskoidal rHDL’ye başarıyla dahil edilmiştir ve araştırmalar, bu proteinlerin reseptörler, enzimler, taşıyıcılar vb. Olarak hem doğal konformasyonu hem de biyolojik aktiviteyi koruduğunu göstermiştir. “Nanodiskler” olarak adlandırılan bu parçacıkların, genellikle yüksek çözünürlükte6’da yapısal karakterizasyona uygun olduğu gösterilmiştir. Transmembran proteinlerinin araştırılmasına yönelik bu yaklaşım, deterjan miselleri veya lipozomlarla yapılan çalışmalardan daha üstün olarak kabul edilmektedir ve sonuç olarak hızla ilerlemektedir. Bir rHDL oluşturabilen iki farklı yöntemin bildirildiğini bilmek önemlidir. “Kolat diyalizi” yöntemi13 , transmembran proteinlerinin rHDL çift katmanlı5’e dahil edilmesiyle ilgili uygulamalar için popülerdir. Temel olarak, bu formülasyon yöntemi, fosfolipit oluşturan bir çift katmanlı, bir iskele proteini ve ilgilenilen transmembran proteininin, deterjan sodyum kolatı (veya sodyum deoksikolat; misel moleküler ağırlığı [MW] 4.200 Da) içeren bir tamponda karıştırılmasını içerir. Deterjan, farklı reaksiyon bileşenlerini etkili bir şekilde çözündürür ve numunenin deterjan içermeyen tamponlara karşı diyalize edilmesine izin verir. Diyaliz adımı sırasında, deterjan numuneden çıkarılırken, kendiliğinden bir rHDL oluşur. Bu yaklaşım, ilgilenilen bir transmembran proteinini yakalamak için kullanıldığında, ürün parçacıkları nanodiskler5 olarak adlandırılmıştır. Bununla birlikte, küçük moleküllü hidrofobik biyoaktif ajanları (MW <1.000 Da) dahil etmek için bu yöntemi kullanma girişimleri büyük ölçüde başarısız olmuştur. Transmembran proteinlerinin aksine, küçük moleküllü biyoaktif ajanlar, deterjanla birlikte diyaliz torbasından kaçabilir, bu da rHDL'lere dahil edilme verimliliklerini büyük ölçüde azaltır. Bu sorun, deterjanların formülasyon karışımı14’ten çıkarılmasıyla çözüldü. Bunun yerine, bileşenler sulu bir tampona sırayla eklenir, lipit oluşturan çift katmandan başlayarak, nanodisk olarak adlandırılan rHDL içeren kararlı bir biyoaktif ajan oluşturur. Diğerleri, in vivo görüntüleme ajanlarının dahil edilmesi ve taşınması için rHDL’yi kullanmıştır7. Daha yakın zamanlarda, ligand bağlama çalışmalarında bir apolipoprotein iskelesi ve anyonik gliserofosfolipid, kardiyolipinden oluşan özel rHDL kullanılmıştır. Bu parçacıklar, kardiyolipinin kalsiyum, sitokrom c ve antikanser ajanı doksorubisin8 dahil olmak üzere suda çözünür çeşitli ligandlarla etkileşiminin incelenmesi için bir platform sağlar.
Bu çalışmanın odak noktası, istikrarlı bir şekilde dahil edilmiş hidrofobik biyoaktif ajana (yani nanodisk) sahip olan rHDL’nin formülasyonu üzerinedir. Bu ajanların diskoidal rHDL partiküllerinin lipit ortamına entegre olma yeteneği, onlara etkili bir şekilde sulu çözünürlük kazandırır. Bu nedenle, nanodiskler in vivo terapötik uygulamalar için potansiyele sahiptir. Nanodiskleri formüle ederken, ayrık hidrofobik biyoaktif ajanları ürün parçacığına başarılı bir şekilde dahil etmek için spesifik inkübasyon / reaksiyon koşulları gereklidir ve bu raporun amacı, belirli uygulamalar için yeni nanodisk parçacıkları oluşturmak için temel bir şablon olarak kullanılabilecek ayrıntılı pratik bilgiler sağlamaktır. Bu nedenle, bu makale bağlamında, nanodisk ve nanodisk terimleri birbirinin yerine kullanılamaz. Nanodisk, lipit çift katmanlı5’e gömülü bir transmembran proteini içerecek şekilde formüle edilmiş bir rHDL’yi ifade ederken, nanodisk terimi, amfoterisin B14 gibi düşük moleküler ağırlıklı (< 1.000 Da) hidrofobik biyoaktif ajanları içerecek şekilde formüle edilmiş bir rHDL'yi ifade eder.
Uygun iskele proteinlerinin elde edilmesi için çeşitli yöntemler mevcuttur. İskele proteinlerini üreticilerden [örneğin apoA-I (SRP4693) veya apoE4 (A3234)] satın almak mümkündür, ancak maliyet sınırlayıcı bir faktör olabilir. Tercih edilen bir yaklaşım, Escherichia coli’deki rekombinant iskele proteinlerini eksprese etmektir. İnsan apoA-I9, apoE410 ve böcek hemolenf proteini apolipophorin-III11 için protokoller yayınlanmıştır. Burada açıklanan deneylerin amacı doğrultusunda, rekombinant insan apoE4 N-terminal (NT) alanı (amino asitler 1-183) kullanılmıştır. İnsan apoE4-NT’yi kodlayan nükleotid dizisi sentezlendi ve vektör kodlu pelB lider dizisine doğrudan bitişik bir pET-22b (+) ekspresyon vektörüne yerleştirildi. Bu yapı bir pelB lider dizisi-apoE4-NT füzyon proteininin ekspresyonuna yol açar. Protein sentezini takiben, bakteriyel pelB lider dizisi, yeni sentezlenen proteini, lider peptidazın pelB dizisini parçaladığı periplazmik boşluğa yönlendirir. Ortaya çıkan apoE4-NT proteini, hiçbir dizi etiketi veya kuyruğu olmadan, daha sonra bakterilerden kaçar ve11,12 kültür ortamında birikerek aşağı akış işlemeyi basitleştirir.
Nanodiskler içeren bir biyoaktif maddenin formülasyonu, aksi takdirde çözünmeyen hidrofobik bileşikleri çözmek için uygun bir yöntem sağlar. Ürün biyoaktif ajan nanodiskleri sulu ortamda tamamen çözünür olduğundan, çok çeşitli hidrofobik moleküller için yararlı bir dağıtım yöntemi sağlarlar (Tablo 1). Bunlar arasında küçük moleküller, doğal ve sentetik ilaçlar, bitkisel besinler, hormonlar vb. Bulunur. Formülasyon stratejisi genellikle biyoaktif maddenin organik çöz…
The authors have nothing to disclose.
Bu çalışma Ulusal Sağlık Enstitüleri’nden (R37 HL-64159) bir hibe ile desteklenmiştir.
Amphotericin B | Cayman Chemical Company | 11636 | ND Formulation & Standard Preparation |
Ampicillin | Fisher Scientific | BP17925 | Transformation & Expansion |
ApoE4-NT Plasmid | GenScript | N/A | Transformation |
Baffled Flask | New Brunswick Scientific | N/A | Expansion & Expression |
BL21 competent E coli | New England Biolabs | C2527I | Transformation |
Centrifuge bottles | Nalgene | 3140-0250 | Expression |
Chloroform | Fisher Scientific | G607-4 | ND Formulation |
DMSO | Sigma Aldrich | 472301 | Standard Prepartation |
Dymyristoylphosphatidylcholine | Avanti Lipids | 850345P | ND Formulation |
Erlenmeyer flask | Bellco Biotechnology | N/A | Expansion & Expression |
Falcon Tubes | Sarstedt Ag & Co | D51588 | Yeast Viability Assay |
Glass borosilicate tubes | VWR | 47729-570 | ND Formulation |
GraphPad (Software) | Dotmatics | N/A | Yeast Viability Assay |
Heated Sonication Bath | VWR | N/A | ND Formulaton |
Heating and Nitrogen module | Thermo Scientific | TS-18822 | ND Formulation |
HiTrap Heparin HP (5 mL) | GE Healthcare | 17-0407-03 | Purification |
Isopropyl β-D-1-thiogalactopyranoside | Fisher Scientific | BP1755 | Expression |
J-25 Centrifuge | Beckman Coulter | J325-IM-2 | Expression |
JA-14 Rotor | Beckman Coulter | 339247 | Expression |
Lyophilizer | Labconco | 7755030 | ND Formulation |
Methanol | Fisher Scientific | A452-4 | ND Formulation |
Nitrogen gas | Praxair | UN1066 | ND Formulation |
NZCYM media | RPI Research Products | N7200-1000.0 | Expansion & Expression |
Pet-22B vector | GenScript | N/A | Transformation |
Petri dish | Fisher Scientific | FB0875718 | Transformation & Expansion |
Quartz Cuvettes | Fisher Brand | 14385 928A | Spectral Analysis |
Shaking Incubator | New Brunswick Scientific | M1344-0004 | Transformation, Expansion, & Expression |
Slide-A-Lyzer Buoys | Thermo Scientific | 66430 | Purification |
SnakeSkin Dialysis Tubing | Thermo Scientific | 68100 | Purification |
SnakeSkin Dialysis Tubing | Thermo Scientific | 88243 | Purification |
Sodium Chloride | Fisher Scientific | S271 | Purification |
Sodium Phosphate dibasic | Fisher Scientific | S374-500 | Purification |
Sodium Phosphate monobasic | Fisher Scientific | BP329-500 | Purification |
Spectra/POR Weighted Closures | Spectrum Medical Industries | 132736 | Purification |
Spectrophotometer | Shimadzu UV-1800 | 220-92961-01 | spectral analysis |
Tabletop Centrifuge | Beckman Coulter | 366816 | ND Formulation |
UVProbe 2.61 (Software) | Shimadzu | N/A | Spectral Analysis |
Vacuum filter | Millipore | 9004-70-0 | Expression & Purification |
Vacuum pump | GAST Manufacturing Inc | DOA-P704-AA | Expression & Purification |
Vortex | Fisher Scientific | 12-812 | ND Formulation |
Yeast | N/A | BY4741 | Yeast Viability Assay |
Yeast Extract-Peptone-Dextrose | BD | 242820 | Yeast Viability Assay |