Se presenta un protocolo detallado de flujo continuo escalable para sintetizar un fluoruro de arilo a partir de una amina de arilo a través de la reacción de Balz-Schiemann.
La demanda de fluoruros aromáticos está aumentando constantemente en las industrias farmacéutica y química fina. La reacción de Balz-Schiemann es una estrategia sencilla para preparar fluoruros de arilo a partir de aminas de arilo, a través de la preparación y conversión de intermedios de tetrafluoroborato de diazonio. Sin embargo, existen riesgos de seguridad significativos en el manejo de las sales de arilo diazonio cuando se amplían. Para minimizar el peligro, presentamos un protocolo de flujo continuo que se ha realizado con éxito a escala de kilogramos que elimina el aislamiento de sales de arilo diazonio al tiempo que facilita la fluoración eficiente. El proceso de diazotización se realizó a 10 °C con un tiempo de residencia de 10 min, seguido de un proceso de fluoración a 60 °C con un tiempo de residencia de 5,4 s con un rendimiento de aproximadamente el 70%. El tiempo de reacción se ha reducido drásticamente mediante la introducción de este sistema de flujo continuo de varios pasos.
La reacción de Balz-Schiemann es un método clásico para reemplazar el grupo diazonio con flúor calentando ArN2+BF4− sin un disolvente 1,2. La reacción se puede aplicar a una amplia variedad de sustratos de arilo amina, por lo que es un enfoque generalmente aplicable para sintetizar aminas de arilo, que se utilizan con frecuencia para intermedios avanzados en las industrias farmacéutica o química fina 2,3. Desafortunadamente, las condiciones de reacción duras se emplean a menudo en la reacción de Balz-Schiemann, y la reacción genera sales de arildiazonio potencialmente explosivas 4,5,6,7,8. Otros desafíos asociados con la reacción de Balz-Schiemann son la formación de productos secundarios durante el proceso de descomposición térmica y su modesto rendimiento. Para minimizar la formación de productos secundarios, la desdiazotización térmica se puede realizar en disolventes nopolares o utilizando sales de diazonio 9,10, lo que significa que las sales de arildizanio deben aislarse. Sin embargo, la diazotización de aminas aromáticas es generalmente exotérmica y rápida, lo que es un riesgo asociado con el aislamiento de la sal explosiva de diazonio, especialmente en la producción a gran escala.
En los últimos años, las tecnologías de síntesis de flujo continuo han ayudado a superar los problemas de seguridad asociados con las reacciones de Balz-Schiemann11,12. Aunque existen algunos ejemplos de diazotización de aminas aromáticas utilizando microrreactores continuos para la desaminación en posiciones para arilcloruros, colorantes 5-azoicos y clorosulfonilación, estas contribuciones sólo fueron reportadas a escala de laboratorio 13,14,15,16,17. Yu y sus colaboradores desarrollaron un proceso continuo a escala kilométrica para la síntesis de fluoruros de arilo18. Han demostrado que la transferencia mejorada de calor y masa de un sistema de flujo beneficiaría tanto al proceso de diazotización como al proceso de fluoración. Sin embargo, utilizaron dos reactores de flujo continuo separados; Por lo tanto, los procesos de diazotización y descomposición térmica se investigaron por separado. Una contribución adicional fue publicada por Buchwald y colaboradores19, donde presentaron una hipótesis de que si la formación del producto estaba procediendo a través del mecanismo SN2Ar o SN1, entonces el rendimiento puede mejorarse aumentando la concentración de la fuente de fluoruro. Desarrollaron un proceso híbrido de reactor de tanque agitado continuo (CSTR) de flujo a continuo en el que las sales de diazonio se generaron y consumieron de manera continua y controlada. Sin embargo, la eficiencia de transferencia de calor y masa de un CSTR no es lo suficientemente buena como un reactor de flujo tubular, y no se puede esperar que se use un CSTR grande con sales explosivas de diazonio en la producción a gran escala. Posteriormente, Naber y sus colaboradores desarrollaron un proceso de flujo totalmente continuo para sintetizar 2-fluoroadenina a partir de 2,6-diaminopurina20. Descubrieron que la reacción exotérmica de Balz-Schiemann era más fácil de controlar de manera continua y que las dimensiones de los tubos del reactor de flujo influirían en los aspectos de transferencia de calor y control de temperatura: un reactor de tubo con grandes dimensiones muestra una mejora positiva. Sin embargo, el efecto de ampliación del reactor tubular será notable, y la escasa solubilidad de la sal de arilo diazonio polar en disolventes orgánicos es problemática para los reactores de tubo estático, que enfrentan un riesgo de bloqueo. A pesar de que se ha establecido un progreso notable, todavía hay algunos problemas asociados con las reacciones a gran escala de Balz-Schiemann. Por lo tanto, el desarrollo de un protocolo mejorado que proporcionaría un acceso rápido y escalable a los fluoruros de arilo sigue siendo significativo.
Los desafíos asociados con el procesamiento de la reacción Balz-Schiemann a gran escala incluyen los siguientes:(i) la inestabilidad térmica de un intermediario de diazonio acumulado durante un corto período de tiempo21; ii) los largos plazos de tramitación; y (iii) el calentamiento no uniforme o la presencia de agua en el fluoroborato de diazonio, lo que lleva a una descomposición térmica incontrolable y a una mayor formación de subproductos22,23. Adicionalmente (iv) en algunos modos de procesamiento de flujo, todavía se requiere un aislamiento del intermediario de diazonio debido a su baja solubilidad14, que luego se alimenta en una reacción de descomposición de velocidad incontrolada. No se puede evitar el riesgo de manipular una gran cantidad de sal de diazonio en línea. Por lo tanto, existe un beneficio significativo en el desarrollo de una estrategia de flujo continuo para resolver los problemas mencionados anteriormente y evitar tanto la acumulación como el aislamiento de las especies inestables de diazonio.
Con el fin de establecer una producción inherentemente más segura de productos químicos en productos farmacéuticos, nuestro grupo se ha centrado en la tecnología de flujo continuo de varios pasos. En este trabajo, aplicamos esta tecnología a la síntesis de Balz-Schiemann en una escala de kilogramos de una manera que elimina el aislamiento de las sales de arilo diazonio, al tiempo que facilita la fluoración eficiente.
Un protocolo de flujo continuo de la reacción de Balz-Schiemann se ha realizado con éxito a través de una combinación de un reactor de flujo de microcanal y un reactor de flujo mixto dinámico. Esta estrategia presenta varias ventajas en comparación con el proceso por lotes: (i) es más seguro con la formación controlada de sal de diazonio; ii) es más susceptible a una temperatura de reacción más alta, 10 °C frente a -20 °C; y (iii) es más eficiente sin aislamiento del intermedio de diazonio, dos pasos en un …
The authors have nothing to disclose.
Nos gustaría agradecer el apoyo del Programa de Ciencia y Tecnología de Shenzhen (Subvención No. KQTD20190929172447117).
2-Methylpyridin-3-amine | Raffles Pharmatech Co. Ltd | C2021236-SM5-H221538-008 | HPLC: >98%, Water by KF ≤0.5% |
316L piston constant flow pump | Oushisheng (Beijing) Technology Co.,Ltd | DP-S200 | |
BF3.Et2O | Whmall.com | B802217 | |
Citric acid | Titan Technology Co., Ltd | G83162G | |
con.HCl | Foshang Xilong Huagong | 1270110101601M | |
Dynamically mixed flow reactor | Autichem Ltd | DM500 | 316L reator with 500 mL of internal volume |
Heptane | Shenzhen Huachang | HCH606 | Water by KF ≤0.5% |
Micro flow reactor | Corning Reactor Technology Co.,Ltd | G1 Galss AFR | Glass module with 9 mL of internal volume |
PTFE piston constant flow pump | Sanotac China | MPF1002C | |
Sodium hydroxide | Foshang Xilong Huagong | 1010310101700 | |
tert-Butyl methyl ether | Titan Technology Co., Ltd | 01153694 | |
tert-Butyl nitrite | Whmall.com | XS22030900060 | |
Tetrahydrofuran | Titan Technology Co., Ltd | 1152930 | Water by KF ≤0.5% |