Burada, sanal gerçeklik (VR) kullanarak fare uzamsal öğrenimini araştırmak için basitleştirilmiş bir açık kaynaklı donanım ve yazılım kurulumu sunuyoruz. Bu sistem, bir mikrodenetleyici ağı ve kullanımı kolay bir Python grafik yazılım paketi çalıştıran tek kartlı bir bilgisayar kullanarak bir tekerlek üzerinde çalışan kafası kısıtlanmış bir fareye sanal bir doğrusal iz görüntüler.
Farelerde kafa kısıtlı davranışsal deneyler, sinirbilimcilerin yüksek çözünürlüklü elektrofizyolojik ve optik görüntüleme araçlarıyla sinir devresi aktivitesini gözlemlemelerini sağlarken, davranan bir hayvana hassas duyusal uyaranlar sağlar. Son zamanlarda, sanal gerçeklik (VR) ortamlarını kullanan insan ve kemirgen çalışmaları, VR’nin, mekansal ve bağlamsal ipuçları gibi parametreler üzerinde son derece hassas kontrol nedeniyle, hipokampus ve kortekste mekansal öğrenmenin altında yatan nöral mekanizmaları ortaya çıkarmak için önemli bir araç olduğunu göstermiştir. Bununla birlikte, kemirgen mekansal davranışları için sanal ortamlar kurmak maliyetli olabilir ve mühendislik ve bilgisayar programlamada kapsamlı bir arka plan gerektirir. Burada, araştırmacıların bir VR ortamı kullanarak kafası kısıtlanmış farelerde mekansal öğrenmeyi incelemelerini sağlayan ucuz, modüler, açık kaynaklı donanım ve yazılıma dayanan basit ama güçlü bir sistem sunuyoruz. Bu sistem, hareketi ölçmek ve davranışsal uyaranlar vermek için birleştirilmiş mikrodenetleyiciler kullanırken, kafası kısıtlanmış fareler, tek kartlı bir bilgisayarda çalışan bir grafik yazılım paketi tarafından oluşturulan sanal bir doğrusal iz ortamıyla uyum içinde bir tekerlek üzerinde çalışır. Dağıtılmış işlemeye yapılan vurgu, araştırmacıların memeli beynindeki nöral devre aktivitesi ile mekansal öğrenme arasındaki bağlantıyı belirlemek için farelerde karmaşık mekansal davranışları ortaya çıkarmak ve ölçmek için esnek, modüler sistemler tasarlamalarına olanak tanır.
Mekansal navigasyon, hayvanların yeni yerlerin özelliklerini olası ödül alanlarını bulmak ve potansiyel tehlike alanlarından kaçınmak için kullanılan bilişsel bir haritaya kodladığı etolojik olarak önemli bir davranıştır. Hafıza ile ayrılmaz bir şekilde bağlantılı olan uzamsal navigasyonun altında yatan bilişsel süreçler, hipokampus1 ve kortekste bir nöral substratı paylaşır; burada bu alanlardaki nöral devreler gelen bilgileri bütünleştirir ve daha sonra hatırlamak için ortamların ve olayların bilişsel haritalarını oluşturur2. Hipokampus 3,4’teki yer hücrelerinin ve entorinal korteks5’teki ızgara hücrelerinin keşfi, hipokampus içindeki bilişsel haritanın nasıl oluştuğuna ışık tutarken, hipokampüsün spesifik nöral alt tiplerinin, mikrodevrelerinin ve bireysel alt bölgelerinin (dentat girus ve kornu ammonis alanları, CA3-1) nasıl etkileşime girdiği ve mekansal hafıza oluşumu ve geri çağırmasına nasıl katıldığı hakkında birçok soru devam etmektedir.
İn vivo iki foton görüntüleme, duyusal nörofizyolojide hücresel ve popülasyon dinamiklerini ortaya çıkarmada yararlı bir araç olmuştur 6,7; Bununla birlikte, baş desteği için tipik gereklilik, memeli mekansal davranışını incelemek için bu yöntemin yararlılığını sınırlar. Sanal gerçekliğin (VR)8 ortaya çıkışı, hipokampus 8,9,10 ve korteks11’de uzamsal ve bağlamsal kodlamayı incelemek için kafası kısıtlanmış fareler bir top veya koşu bandı üzerinde koşarken, sürükleyici ve gerçekçi görsel uzamsal ortamlar sunarak bu eksikliği gidermiştir. Ayrıca, VR ortamlarının davranan farelerle kullanılması, sinirbilim araştırmacılarının, VR ortamının12 unsurlarını (örneğin, görsel akış, bağlamsal modülasyon) Morris su labirenti, Barnes labirenti veya delik tahtası görevleri gibi gerçek dünyadaki mekansal öğrenme deneylerinde mümkün olmayan şekillerde hassas bir şekilde kontrol ederek mekansal davranışın bileşenlerini incelemelerine izin vermiştir.
Görsel VR ortamları tipik olarak, hareketli bir 3B ortamı gerçek zamanlı olarak bir ekranda modellemek için gereken binlerce çokgeni hızlı bir şekilde hesaplama yükünü üstlenen bir bilgisayarın grafik işlem biriminde (GPU) işlenir. Büyük işleme gereksinimleri genellikle, hareket hayvanın altındaki bir koşu bandından, tekerlekten veya köpük topundan kaydedildiğinden, görsel ortamı bir monitöre, birden fazla ekrana13 veya projektör 14’e işleyen bir GPU’ya sahip ayrı bir bilgisayarın kullanılmasını gerektirir. VR ortamını kontrol etmek, işlemek ve yansıtmak için ortaya çıkan aparat, bu nedenle, nispeten pahalı, hantal ve hantaldır. Ayrıca, literatürdeki bu tür birçok ortam, hem pahalı hem de yalnızca özel bir PC’de çalıştırılabilen özel mülk yazılımlar kullanılarak uygulanmıştır.
Bu nedenlerden dolayı, Raspberry Pi tek kartlı bir bilgisayar kullanarak kafası kısıtlanmış farelerde mekansal öğrenme davranışlarını incelemek için açık kaynaklı bir VR sistemi tasarladık. Bu Linux bilgisayar hem küçük hem de ucuzdur, ancak VR ortamlarının çeşitli bireysel kurulumlarda ekran veya davranışsal aparatlarla entegrasyonuna izin veren 3D oluşturma için bir GPU çipi içerir. Ayrıca, Python ile yazılmış “HallPassVR” adlı bir grafik yazılım paketi geliştirdik, bu da grafik kullanıcı arayüzü (GUI) kullanılarak seçilen özel görsel özellikleri yeniden birleştirerek basit bir görsel uzamsal ortam, sanal bir doğrusal parça veya koridor oluşturmak için tek kartlı bilgisayarı kullanıyor. Bu, pekiştirmeli öğrenmeyi kolaylaştırmak için diğer duyusal uyaran modalitelerinin veya ödüllerin sunulması gibi hareketleri ölçmek ve davranışı koordine etmek için mikrodenetleyici alt sistemleriyle (örneğin, ESP32 veya Arduino) birleştirilir. Bu sistem, mekansal öğrenme davranışının altında yatan nöral devreleri incelemek için iki fotonlu görüntüleme (veya kafa fiksasyonu gerektiren diğer teknikler) sırasında kafa kısıtlı farelere görsel uzamsal VR ortamları sunmak için ucuz, esnek ve kullanımı kolay bir alternatif yöntem sunar.
Fareler için bu açık kaynaklı VR sistemi, yalnızca döner ve davranışlı ESP32 mikrodenetleyicileri ile IDE seri monitörü (adım 2.4.5) kullanılarak doğrulanabilen tek kartlı bilgisayar (adım 2) arasında seri bağlantılar düzgün bir şekilde yapılırsa çalışacaktır. Bu protokolden başarılı davranışsal sonuçlar elde etmek için (adım 4), fareler cihaza alışmalı ve sıvı ödüller için direksiyonda rahatça çalışmalıdır (adım 4.3-4.5). Bu, yeterli (ancak aşırı olmayan) su kısıtl…
The authors have nothing to disclose.
Harvey laboratuvarından Noah Pettit’e bu yazıdaki protokolü geliştirirken tartışma ve önerileri için teşekkür ederiz. Bu çalışma, NINDS R56NS128177 (R.H., C.L.) ve NIMH R01MH068542 (R.H.) ‘ye ek olarak BBRF Genç Araştırmacı Ödülü ve NIMH 1R21MH122965 (G.F.T.) tarafından desteklenmiştir.
1/4 " diam aluminum rod | McMaster-Carr | 9062K26 | 3" in length for wheel axle |
1/4"-20 cap screws, 3/4" long (x2) | Amazon.com | B09ZNMR41V | for affixing head post holders to optical posts |
2"x7" T-slotted aluminum bar (x2) | 8020.net | 1020 | wheel/animal mounting frame |
6" diam, 3" wide acrylic cylinder (1/8" thick) | Canal Plastics | 33210090702 | Running wheel (custom width cut at canalplastics.com) |
8-32 x 1/2" socket head screws | McMaster-Carr | 92196A194 | fastening head post holder to optical post |
Adjustable arm (14") | Amazon.com | B087BZGKSL | to hold/adjust lick spout |
Analysis code (MATLAB) | custom written | file at github.com/GergelyTuri/HallPassVR/software/Analysis code | |
Axle mounting flange, 1/4" ID | Pololu | 1993 | for mounting wheel to axle |
Ball bearing (5/8" OD, 1/4" ID, x2) | McMaster-Carr | 57155K324 | for mounting wheel axle to frame |
Behavior ESP32 code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Arduino code/Behavior board | |
Black opaque matte acrylic sheets (1/4" thick) | Canal Plastics | 32918353422 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly |
Clear acrylic sheet (1/4" thick) | Canal Plastics | 32920770574 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR wheel assembly |
ESP32 devKitC v4 (x2) | Amazon.com | B086YS4Z3F | microcontroller for behavior and rotary encoder |
ESP32 shield | OpenMaze.org | OMwSmall | description at www.openmaze.org (https://claylacefield.wixsite.com/openmazehome/copy-of-om2shield). ZIP gerber files at: https://github.com/claylacefield/OpenMaze/tree/master/OM_PCBs |
Fasteners and brackets | 8020.net | 4138, 3382,3280 | for wheel frame mounts |
goniometers | Edmund Optics | 66-526, 66-527 | optional for behavior. Fine tuning head for imaging |
HallPassVR python code | custom written | file at github.com/GergelyTuri/HallPassVR/software/HallPassVR | |
Head post holder | custom design | 3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/Headpost Clamp | |
LED projector | Texas Instruments | DLPDLCR230NPEVM | or other small LED projector |
Lick spout | VWR | 20068-638 | (or ~16 G metal hypodermic tubing) |
M 2.5 x 6 set screws | McMaster-Carr | 92015A097 | securing head post |
Matte white diffusion paper | Amazon.com | screen material | |
Metal headposts | custom design | 3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/head post designs | |
Miscellenous tubing and tubing adapters (1/16" ID) | for constructing the water line | ||
Optical breadboard | Thorlabs | as per user's requirements | |
Optical posts, 1/2" diam (2x) | Thorlabs | TR4 | for head fixation setup |
Processing code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Processing code | |
Raspberry Pi 4B | raspberry.com, adafruit.com | Single-board computer for rendering of HallPassVR envir. | |
Right angle clamp | Thorlabs | RA90 | for head fixation setup |
Rotary encoder (quadrature, 256 step) | DigiKey | ENS1J-B28-L00256L | to measure wheel rotation |
Rotary encoder ESP32 code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Arduino code/Rotary encoder | |
SCIGRIP 10315 acrylic cement | Amazon.com | ||
Shaft coupler | McMaster-Carr | 9861T426 | to couple rotary encoder shaft with axle |
Silver mirror acrylic sheets | Canal Plastics | 32913817934 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly |
Solenoid valve | Parker | 003-0137-900 | to administer water rewards |