Здесь мы познакомим вас с принципом, структурой и инструкцией интеллектуальной высокопроизводительной системы тестирования чувствительности к противомикробным препаратам/скрининга фагов. Его применение проиллюстрировано на примере сальмонеллы , выделенной от домашней птицы в провинции Шаньдун, Китай. Рассчитан индекс Лара и всесторонне рассмотрено его значение в оценке антимикробной резистентности.
Для повышения эффективности тестирования на чувствительность к противомикробным препаратам (AST) и высокопроизводительного скрининга фагов на резистентные бактерии, а также для снижения затрат на обнаружение, была разработана интеллектуальная высокопроизводительная система AST/фагового скрининга, включающая 96-точечный матричный инокулятор, преобразователь получения изображений и соответствующее программное обеспечение, в соответствии с критериями AST и точками разрыва резистентности (R), сформулированными Институтом клинических и лабораторных стандартов (CLSI). АСТ и статистические данные о распределении минимальной ингибирующей концентрации (МПК) (от R/8 до 8R) 1500 штаммов сальмонеллы , выделенных от домашней птицы в Шаньдуне, Китай, по сравнению с 10 антимикробными агентами были проведены с помощью интеллектуальной высокопроизводительной системы скрининга АСТ/фагов. Индекс Лара, означающий «меньше антибиотика, меньше резистентности и остаточный до тех пор, пока антибиотика мало», был получен путем вычисления средневзвешенного значения каждого МПК и деления на R. Такой подход повышает точность по сравнению с использованием показателя распространенности резистентности для характеристики степени устойчивости к противомикробным препаратам (УПП) штаммов с высокой устойчивостью. Для штаммов сальмонелл с высоким УПП литические фаги были эффективно отобраны из библиотеки фагов с помощью этой системы, а также рассчитан и проанализирован спектр лизиса. Результаты показали, что интеллектуальная высокопроизводительная система скрининга АСТ/фагов является работоспособной, точной, высокоэффективной, недорогой и простой в обслуживании. В сочетании с Шаньдунской ветеринарной системой мониторинга устойчивости к противомикробным препаратам эта система была пригодна для научных исследований и клинического выявления УПП.
Поскольку противомикробные препараты широко используются для профилактики бактериальных инфекционных заболеваний, устойчивость к противомикробным препаратам (УПП) стала глобальной проблемой общественногоздравоохранения1. Борьба с УПП в настоящее время является основной миссией мониторинга УПП эпидемиологических патогенов и синергической терапии чувствительных антимикробных препаратов и литических бактериофагов2.
Тестирование чувствительности к противомикробным препаратам in vitro (АСТ) является основой для мониторинга терапии и определения уровня УПП. Это важная часть фармакологии противомикробных препаратов и важнейшая основа для клинических препаратов. Институт клинических и лабораторных стандартов (CLSI) Соединенных Штатов Америки и Европейский комитет по тестированию на чувствительность к противомикробным препаратам (EUCAST) сформулировали и пересмотрели международные критерии АСТ, а также постоянно модифицировали и дополняли методы АСТ и контрольные точки для определения МПК одной определенной комбинации «организм-антимикробный агент» как чувствительного (S), резистентного (R) или промежуточного (I)3. 4. См.
В период с 1980-х по 1990-е годы были быстро разработаны и применены в клинической практике автоматические приборы для разведения микробульона, в том числе Alfred 60AST, VITEK System, PHOENIXTM и Cobasbact 5,6,7. Однако эти приборы были дорогими, требовали дорогостоящих расходных материалов, а их диапазоны обнаружения были рассчитаны на клиническое лечение пациентов 5,6,7. По этим причинам они не подходят для ветеринарного клинического обследования и выявления больших количеств высокорезистентных штаммов. В данном исследовании была разработана интеллектуальная высокопроизводительная система скрининга АСТ/фагов, включающая 96-точечный матричный инокулятор (рис. 1), преобразователь получения изображений (рис. 2) и соответствующее программное обеспечение8, для проведения АСТ для партии штаммов бактерий против нескольких антимикробных агентов одновременно методом агарового разведения. Кроме того, система также использовалась для обнаружения и анализа паттернов лизиса фагов против устойчивых к противомикробным препаратам бактерий9, а литические фаги были эффективно отобраны из библиотеки фагов. Эта система оказалась эффективной, доступной и простой в эксплуатации.
Рисунок 1: Структурная схема 96-точечного матричного инокулятора. 1: Штифтовая пластина для прививки; 2: Оператор мобильной связи; 3: Исходный блок; 4: Инкубационная пластина; 5: База; 6: Рукоятка управления; 7: Ограничительный штифт. Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
Рисунок 2: Структурная схема конвертера для получения изображений. 1: Оболочка; 2: Экран дисплея; 3: Помещение для получения изображений; 4: Основание платы детектирования; 5: Доска обнаружения на складе и за его пределами; 6: Пульт управления; 7: Устройство преобразования изображения; 8: Источник света; 9: Сканер изображений. Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
Метод разбавления агаром хорошо зарекомендовал себя и широко используется. Принцип работы высокопроизводительной системы АСТ был основан на методе разбавления агара. Одним из важнейших шагов в рамках протокола была точная высокопроизводительная передача 96 инокулей за один раз, кото?…
The authors have nothing to disclose.
Работа выполнена при поддержке Национального проекта по ключевым исследованиям и разработкам (2019YFA0904003); Современная сельскохозяйственная промышленная система в провинции Шаньдун (SDAIT-011-09); Проект по оптимизации платформы международного сотрудничества (CXGC2023G15); Основные инновационные задачи сельскохозяйственной науки и техники, инновационный проект Академии сельскохозяйственных наук, Шаньдун, Китай (CXGC2023G03).
96 well culture plate | Beijing lanjieke Technology Co., Ltd | 11510 | |
96-dot matrix AST image acquisition system | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
96-dot matrix inoculator | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | N/A | Patented product |
Agar | Qingdao hi tech Industrial Park Haibo Biotechnology Co., Ltd | HB8274-1 | |
Amikacin | Shanghai McLean Biochemical Technology Co., Ltd | A857053 | |
Amoxicillin | Shanghai McLean Biochemical Technology Co., Ltd | A822839 | |
Ampicillin | Shanghai McLean Biochemical Technology Co., Ltd | A830931 | |
Analytical balance | Sartorius | BSA224S | |
Automated calculation software for Lar index of AMR | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
Bacteria Salmonella strains | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | N/A | Animal origin |
Bacterial resistance Lar index certification management system V1.0 | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
Ceftiofur | Shanghai McLean Biochemical Technology Co., Ltd | C873619 | |
Ciprofloxacin | Shanghai McLean Biochemical Technology Co., Ltd | C824343 | |
Clavulanic acid | Shanghai McLean Biochemical Technology Co., Ltd | C824181 | |
Clean worktable | Suzhou purification equipment Co., Ltd | SW-CJ-2D | |
Colistin sulfate | Shanghai McLean Biochemical Technology Co., Ltd | C805491 | |
Culture plate | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | N/A | Patented product |
Doxycycline | Shanghai McLean Biochemical Technology Co., Ltd | D832390 | |
Enrofloxacin | Shanghai McLean Biochemical Technology Co., Ltd | E809130 | |
Filter 0.22 μm | Millipore | SLGP033RB | |
Florfenicol | Shanghai McLean Biochemical Technology Co., Ltd | F809685 | |
Gentamicin | Shanghai McLean Biochemical Technology Co., Ltd | G810322 | |
Glass bottle 50 mL | Xuzhou Qianxing Glass Technology Co., Ltd | QX-7 | |
High-throughput resistance detection system V1.0 | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
Image acquisition converter | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | N/A | Patented product |
Meropenem | Shanghai McLean Biochemical Technology Co., Ltd | M861173 | |
Mueller-Hinton agar | Qingdao hi tech Industrial Park Haibo Biotechnology Co., Ltd | HB6232 | |
Petri dish 60 mm x 15 mm | Qingdao Jindian biochemical equipment Co., Ltd | 16021-1 | |
Petri dish 90 mm x 15 mm | Qingdao Jindian biochemical equipment Co., Ltd | 16001-1 | |
Salmonella phages | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | N/A | |
Shaker incubator | Shanghai Minquan Instrument Co., Ltd | MQD-S2R | |
Turbidimeter | Shanghai XingBai Biotechnology Co., Ltd | F-TC2015 | |
Varms base type library system V1.0 | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
Vertical high-pressure steam sterilizer | Shanghai Shen'an medical instrument factory | LDZX-75L | |
Veterinary pathogen resistance testing management system | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright | |
Veterinary resistance cloud monitoring and phage control platform V1.0 | Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences | In-house software copyright |