Здесь мы сообщаем протокол количественной оценки и дифференцировки В-лимфоцитов миокарда на основе их расположения во внутрисосудистом или эндотелиальном пространстве с помощью проточной цитометрии.
Растущее количество доказательств показывает, что В-лимфоциты играют важную роль в контексте физиологии миокарда и адаптации миокарда к травмам. Однако в литературе приводятся контрастные данные о распространенности В-клеток миокарда. Сообщалось, что В-клетки являются одними из наиболее распространенных иммунных клеток в сердце грызунов или присутствуют, но с заметно более низкой распространенностью, чем миелоидные клетки, или довольно редки. Аналогичным образом, несколько групп описали, что количество В-клеток миокарда увеличивается после острого ишемического повреждения миокарда, но одна группа не сообщила об изменениях в количестве В-клеток поврежденного миокарда. Реализация общего, воспроизводимого метода оценки распространенности В-клеток миокарда имеет решающее значение для гармонизации наблюдений различных исследовательских групп и, таким образом, способствует продвижению изучения взаимодействий миокарда В-клеток. Основываясь на нашем опыте, кажущиеся контрастными наблюдения, о которых сообщается в литературе, вероятно, связаны с тем фактом, что мышиные В-клетки миокарда в основном внутрисосудистые и связаны с микрососудистым эндотелием. Поэтому количество В-клеток, извлеченных из мышиного сердца, чрезвычайно чувствительно к условиям перфузии, используемым для очистки органа, и к используемому методу пищеварения. Здесь мы сообщаем об оптимизированном протоколе, который учитывает эти две критические переменные определенным образом. Этот протокол обеспечивает воспроизводимый, основанный на проточной цитометрии анализ количества мышиных В-клеток миокарда и позволяет исследователям различать внесосудистые и внутрисосудистые В-клетки миокарда.
В-лимфоциты являются узкоспециализированными иммунными клетками, которые играют важную роль как в адаптивных, так и во врожденных иммунных реакциях1. Существует две основные популяции В-клеток: меньшая популяция клеток В1, которые в основном вырабатываются во время эмбриональной жизни, и преобладающая популяция клеток В2, которые производятся во взрослой жизни в костном мозге1. После созревания в костном мозге В-клетки мигрируют в первичные и вторичные лимфоидные органы. Оттуда они непрерывно рециркулируют между лимфоидными органами, проходящими через кровеносные сосуды, и лимфатическими сосудами2. В-клетки экспрессируют специфические антитела на своей поверхности, которые функционируют как рецепторы. Когда В-клетки сталкиваются с антигеном, который связывается с их рецептором, может быть запущен активирующий сигнал. Активированные В-клетки либо мигрируют в ткань, где был обнаружен антиген, либо возвращаются в костный мозг, где они могут созревать в плазматические клетки, продуцирующие антитела 3,4.
В последнее время было признано, что сердце содержит значительную популяцию В-клеток. Исследования на грызунах показали, что В-клетки колонизируют сердце на ранних стадиях эмбрионального развития5, и что В-клетки, ассоциированные с миокардом, в основном являются внутрисосудистыми, наивными B2-клетками, прилипшими к эндотелию 6,7, с небольшим процентом клеток B17. Есть еще много областей неопределенности, но имеющиеся данные указывают на то, что В-клетки играют важную роль как в наивном сердце, так и в контексте адаптации миокарда к травме.
Исследования на наивного мышиного сердца показали, что на исходном уровне В-клетки миокарда в основном располагаются во внутрисосудистом пространстве, прилипают к эндотелию (>95% мышиных сердечных В-клеток оказались расположенными во внутрисосудистом пространстве). Было обнаружено, что эти В-клетки имеют паттерны экспрессии генов, отличные от паттернов циркулирующих В-клеток, выделенных из периферической крови. Анализ наивных сердец у животных с дефицитом В-клеток и сингенного контроля показал, что животные, лишенные В-клеток, имели меньшие сердца и более высокую фракциювыброса 6. Все эти данные свидетельствуют о том, что В-клетки могут модулировать рост миокарда и / или функцию миокарда, и что не только интерстициальные, но и внутрисосудистые В-клетки могут быть ответственны за такие наблюдения. Было также обнаружено, что В-клетки модулируют фенотип резидентных макрофагов миокарда8.
Несколько исследований показали, что В-клетки играют важную роль в контексте адаптации миокарда к травме 8,9,10,11,12,13. В-клетки временно накапливаются в поврежденном сердце, вероятно, через CXCL13-CXCR5 зависимый механизм 11,13. Оттуда В-клетки способствуют неблагоприятному ремоделированию сердца с помощью нескольких механизмов, которые включают цитокин-опосредованный моноцит, рекрутирующий 9,12. Кроме того, В-клетки могут вырабатывать антитела против сердечных белков, которые могут способствовать расширению сердечных повреждений и неблагоприятному ремоделированию сердца с помощью нескольких механизмов 14,15,16,17,18,19,20,21,22,23,24,25 . В-клетки также могут оказывать защитное воздействие на поврежденное сердце через секрецию IL-1010.
По мере роста числа групп, изучающих роль В-клеток в наивном и поврежденном сердце, становится все более и более важным определить общие протоколы для правильной количественной оценки и оценки В-клеток миокарда и, таким образом, избежать несоответствий, которые уже начали появляться в литературе. До сих пор сообщалось, что В-клетки являются одними из наиболее распространенных иммунных клеток в сердце грызунов7 и присутствуют с заметно более низкой распространенностью, чем миелоидные клетки26,27 или довольно редко28. Аналогичным образом, несколько групп описали, что количество В-клеток миокарда увеличивается после острого ишемического повреждения миокардана 7,9,13, но одна группа сообщила об отсутствии изменений в количестве В-клеток поврежденного миокарда29. Исследования сердечных иммунных клеток редко дают подробную информацию об условиях перфузии, и нет единого мнения об условиях пищеварения. Поскольку в сердце грызунов большая часть В-клеток является внутрисосудистой, а извлечение иммунных клеток из миокарда сильно зависит от используемого метода пищеварения, различия, о которых сообщается в литературе, могут быть результатом различий в перфузии органов и переваривании тканей.
Здесь представлен подробный метод количественной оценки В-клеток мышиного миокарда на основе проточной цитометрии, который максимизирует выход восстановления В-клеток за счет оптимизации условий перфузии и пищеварения и позволяет различать внутрисосудистые и внесосудистые В-клетки миокарда6. Этот протокол является адаптацией и оптимизацией других подобных протоколов, которые различают внутрисосудистые и интерстициальные иммунные клетки 28,30,31.
В этом протоколе мы стандартизируем перфузию миокарда для устранения В-клеток, плавающих во внутрисосудистом пространстве, без удаления биологически значимых В-клеток, прилипших к микрососудистому эндотелию. Более того, основываясь на предыдущих протоколах, которые описывали использование внутривенного введения антител для различения внутрисосудистых и интерстициальных иммунных клеток32, и используя тот факт, что В-клетки экспрессируют поверхностный маркер B22033, мы демонстрируем, как различать внутрисосудистые и внесосудистые В-клетки миокарда посредством внутрисосудистой инъекции B220-специфического антитела непосредственно перед жертвоприношением животных и сердечной перфузией. Этот протокол актуален для исследований любого ученого, заинтересованного во включении анализа В-клеток миокарда в наивное и травмированное сердце. Широкое внедрение этого протокола уменьшит несоответствия между исследовательскими группами, позволит анализировать изменения во внутрисосудистых и внесосудистых пулах В-клеток миокарда и, таким образом, будет способствовать продвижению открытий в области иммунологии сердца.
Таким образом, протокол представляет собой оптимизированный рабочий процесс для количественной оценки и анализа В-клеток миокарда с помощью проточной цитометрии и в то же время различения клеток, расположенных во внесосудистом пространстве и внутрисосудистом пространстве.
Растущее количество доказательств указывает на то, что В-клетки играют важную роль в контексте физиологии миокарда и ремоделирования миокарда / адаптации к травме 7,8,9,10,11,12,13,36.…
The authors have nothing to disclose.
Это исследование финансировалось грантами NHLBI 5K08HLO145108-03 и 1R01HL160716-01, присужденными Луиджи Адамо.
Проточный цитометр Aurora, используемый для разработки этого исследования, финансировался грантом NIH S10OD026859. Мы признаем поддержку ядра проточной цитометрии JHU Ross.
Alexa Fluor 700 anti-mouse/human CD11b Antibody | 101222 | BioLegend | 100 µg 200 µL |
(CellTreat 29481) Cell Strainer, 40 µm, Blue | QBIAP303 | Southern Labware | |
0.5 mL Natural Microcentrifuge Tube | 1605-0000 | SealRite, USA Scientific | |
0.9% Sodium Chloride Injection, USP | 114-055-101 | Quality Biological | 0.90% |
1.5 mL Natural Microcentrifuge Tube | 1615-5500 | SealRite, USA Scientific | |
10 µL Graduated TipOne Filter Tips | 11213810 | USA Scientific | |
1000 µL Graduated TipOne Filter Tips | 11267810 | USA Scientific | |
15 mL Centrifuge Tube, Plug Seal Cap, Polypropylene, RNase-/DNase-free | 430052 | Corning | |
1-Way Stop Valve, Polycarbonate | SVPT951 | ECT Manufacturing | |
2,2,2-Tribromoethanol | T48402 | Sigma-Aldrich | |
200 µL Graduated TipOne Filter Tips | 11208810 | USA Scientific | |
3-Way Stop Valve, Polycarbonate | SVPT953 | ECT Manufacturing | |
5 mL Polystyrene Round-Bottom Tube, 12 x 75 mm style | 352054 | Falcon, a Corning Brand | |
50 mL Centrifuge Tube, Plug Seal Cap, Polypropylene, RNase-/DNase-free | 430290 | Corning | |
ACK (Ammonium-Chloride-Potassium) Lysing Buffer | 118-156-101 | Quality Biological | Osmolality: 290 + or -5% mOsm/Kg H20 |
Adapter 4x50ml, for 250 mL rectangular bucket in Rotor A-4-63 | 5810759005 | Eppendorf | |
Adapter for 15 mL Centrifuge Tubes, 9 Tubes per Adapter, Conical Bottom for use with Rotor Model A-4-62 | 22638289 | Eppendorf | |
Adapter for 15 round-bottom tubes 2.6 – 7 mL, for 250 mL rectangular bucket in Rotor A-4-62 | 22638246 | Eppendorf | |
Aluminum Foil 12 in x 75' Roll .0007 | UPC 109153 | Reynolds Wrap | |
Anesthesia Induction Chamber – Mouse | RWD-AICMV-100 | Conduct Science | |
BD Luer Slip Tip Syringe with attached needle 25 G x 5/8 in., sterile, single use, 1 mL | 309626 | BD Becton, Dickinson and Company | |
Brandzig Ultra-Fine Insulin Syringes 29G 1cc 1/2" 100-Pack | CMD 2613 | Brandzig | |
Brilliant Violet 421 anti-mouse CD19 Antibody | 115537 | BioLegend | 50 µg/mL |
CAPS for Flow Tubes w/strainer mesh 35 µm, Dual position for 12 x 75 mm tubes, sterile | T9009 | Southern Labware | |
Carbon Dioxide USP E CGA 940 | CD USPE | AirGas USA | |
Cole-Parmer Essentials Low-Form Beaker, Glass, 500 mL | UX-34502-46 | Cole-Parmer | |
Collagenase 2 | LS004176 | Sigma-Aldrich | |
Connector brass chrome plated 1/4" female NPT x 1/4" barb | Y992611-AG | AirGas USA | |
Cytek Aurora Flow Cytometer | Cytek Biosciences | ||
Diss 1080 Nipple 1/4 BARB CP | M-08-12 | AirGas USA | |
DNase I – 40,000 U | D4527 | Sigma-Aldrich | |
Easypet 3 – Electronic Pipette Controller | 4430000018 | Eppendorf | |
Electronic Balance, AX223/E | 30100606 | Ohaus Corp. | |
Eppendorf 5810R centrifuge | 5810R | Eppendorf | |
Eppendorf Research plus 1-channel variable pipettes | Eppendorf | ||
FlowJo 10.8.1 | BD Becton, Dickinson and Company | ||
GLACIERbrand, triple density Ice Pan (IPAN-3100) | Z740287 | Heathrow Scientific | |
HBSS (1x) – Ca2+ [+] Mg2+ [+] | 14025076 | gibco | 1x |
Hyaluronidase | H3506 | Sigma-Aldrich | |
Kelly Hemostats, Straight | 13018-14 | Fine Science Tools | |
Luer Slip Syringe sterile, single use, 20 mL | 302831 | BD Becton, Dickinson and Company | |
M1 Adj. Reg 0-100 PSI/CGA940 | M1-940-PG | AirGas USA | |
McKesson Underpads, Moderate | 4033-CS150 | McKesson | |
Navigator Multi-Purpose Portable Balance | NV2201 | Ohaus Corp. | |
PBS pH 7.4 (1X) Ca2+ [-] Mg2+ [-] | 10010023 | gibco | 1x |
PE anti-mouse/human CD45R/B220 Antibody | 103208 | BioLegend | 200 µg/mL |
PerCP/Cyanine5.5 anti-mouse CD45 Antibody | 103132 | BioLegend | 100 µg 500 uL |
Petri dish, Stackable 35 mm x 10 mm Sterile Polystyrene | FB0875711YZ | Fisher Scientific | |
Pkgd: Diss 1080 Nut/CO2/CO2-02 | M08-1 | AirGas USA | |
Powerful 6 Watt LED Dual Goose-Neck Illuminator | LED-6W | AmScope | |
PrecisionGlide Needle 25 G x 5/8 (0.5 mm x 16 mm) | 305122 | BD Becton, Dickinson and Company | |
Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) Clone 2.4G2 (RUO) | 553141 | BD Becton, Dickinson and Company Biosciences | 0.5 mg/mL |
R 4.1.1 | The R Foundation | ||
Razor Blades | 9501250000 | Accutec Blades Inc | |
Regulator analytical two stage 0-25 psi delivery CGA320 3500 psi inlet | Y12244A320-AG | AirGas USA | |
Rotor A-4-62, incl. 4 x 250 mL rectangular buckets | Rotor A-4-62 | Eppendorf | |
Serological pipette, plugged, 10 mL, sterile, non-pyrogenic/endotoxin-free, non-cytotoxic, 1 piece(s)/blister | 86.1254.001 | Sarstedt AG & Co KG | |
Sigma label tape | L8394 | Sigma-Aldrich | |
SpectroFlo 3.0.0 | Cytek Biosciences | ||
Spex VapLock Luer Fitting, PP, Straight, Male Luer Lock x 1/8" Hose Barb; 1/EA | MTLL230-6005 | Spex | |
Std Wall Lab Tubing, Size S2, Excelon, 1/8" ID x 3/16" OD x 1/32" Wall x 50' Long | CG-730-003 | Excelon Laboratory | |
Syringe PP/PE without needle, 3 mL | Z683566 | Millipore Sigma | |
Syringe pump | 55-1199 (95-240) | Harvard Apparatus | |
Thomas 3-Channel Alarm Timer TM10500 | 9371W13 | Thomas Scientific | |
Tube Rack, 12 positions, 6 for 5.0 mL and 15 mL tubes and 6 for 25 mL and 50 mL tubes, polypropylene, numbered positions, autoclavable | 30119835 | Eppendorf | |
Tube Rack, 12 positions, for 5.0 mL and 15 mL tubes, polypropylene, numbered positions, autoclavable | 30119827 | Eppendorf | |
TYGON R-3603 Laboratory Tubing, I.D. × O.D. 1/4 in. × 3/8 in. | T8913 (Millipore Sigma) | Tygon, Saint-Gobain | |
Vortex-Genie 2 | SI-0236 | Scientific Industries, Inc. | |
VWR Dissecting Forceps with Guide Pin with Curved Tips | 89259-946 | Avantor, by VWR | |
VWR Dissecting Scissors, Sharp Tip, 4½" | 82027-578 | Avantor, by VWR | |
VWR Incubating Orbital Shaker, Model 3500I | 12620-946 | Avantor, by VWR | |
Zombie Aqua Fixable Viability Kit | 423102 | BioLegend |