Wir präsentieren ein Protokoll zur Entwicklung epithelialer Organoidkulturen ausgehend vom menschlichen Zahn. Die Organoide sind robust expandierbar und rekapitulieren die epithelialen Stammzellen des Zahnes, einschließlich ihrer Ameloblasten-Differenzierungskapazität. Das einzigartige Organoidmodell bietet ein vielversprechendes Werkzeug, um die Biologie der menschlichen Zahnmedizin (Stammzelle) mit Perspektiven für zahnregenerative Ansätze zu untersuchen.
Zähne sind von entscheidender Bedeutung im Leben, nicht nur für den Kauen und die Sprache, sondern auch für das psychische Wohlbefinden. Das Wissen über die Entwicklung und Biologie des menschlichen Zahns ist knapp. Insbesondere ist nicht viel über die epithelialen Stammzellen des Zahnes und ihre Funktion bekannt. Es ist uns gelungen, ein neuartiges Organoidmodell zu entwickeln, das auf menschlichem Zahngewebe (d.h. Zahnfollikel, isoliert aus extrahierten Weisheitszähnen) basiert. Die Organoide sind robust und langfristig erweiterbar und rekapitulieren das vorgeschlagene epitheliale Stammzellkompartiment des menschlichen Zahnes sowohl in Bezug auf die Markerexpression als auch auf die funktionelle Aktivität. Insbesondere sind die Organoide in der Lage, einen Ameloblastendifferenzierungsprozess zu entfalten, wie er in vivo während der Amelogenese abläuft. Dieses einzigartige Organoidmodell wird ein leistungsfähiges Werkzeug zur Untersuchung nicht nur der Entwicklung des menschlichen Zahnes, sondern auch der Zahnpathologie bieten und den Weg für eine zahnregenerative Therapie ebnen. Der Ersatz verlorener Zähne durch einen biologischen Zahn, der auf diesem neuen Organoidmodell basiert, könnte eine attraktive Alternative zur derzeitigen Standardimplantation von synthetischen Materialien sein.
Zähne spielen eine wesentliche Rolle beim Kauen von Lebensmitteln, bei der Sprache und beim psychischen Wohlbefinden (Selbstbild). Der menschliche Zahn besteht aus hochmineralisiertem Gewebe unterschiedlicher Dichte und Härte1. Zahnschmelz, der Hauptbestandteil der Zahnkrone, ist das am höchsten mineralisierte Gewebe im menschlichen Körper. Während der Schmelzbildung (Amelogenese), wenn sich Zähne entwickeln, differenzieren sich zahnepitheliale Stammzellen (DESCs) in schmelzbildende Zellen (Ameloblasten). Einmal gebildet, wird der Zahnschmelz aufgrund des apoptotischen Verlustes der Ameloblasten zu Beginn des Zahnausbruchs selten repariert oder erneuert1. Die Wiederherstellung von beschädigtem Schmelzgewebe, wie es durch Trauma oder bakterielle Erkrankungen verursacht wird, wird derzeit mit synthetischen Materialien durchgeführt; Diese sind jedoch mit wichtigen Mängeln wie Mikroleckage, minderwertiger Osseointegration und Verankerung, begrenzter Lebensdauer und fehlender voll funktionsfähiger Reparaturkonfrontiert 2. Daher wäre eine robuste und zuverlässige Kultur menschlicher DESCs mit der Fähigkeit, Ameloblasten zu erzeugen und das Potenzial, mineralisiertes Gewebe zu produzieren, ein großer Schritt vorwärts im Bereich der dentalen Regenerative.
Das Wissen über den menschlichen DESC-Phänotyp und die biologische Funktion ist knapp 3,4,5. Interessanterweise wurde vorgeschlagen, dass DESCs menschlicher Zähne in den Epithelzellresten von Malassez (ERM) existieren, Zellclustern, die im Zahnfollikel (DF) vorhanden sind, der nicht durchgebrochene Zähne umgibt und im Parodontalband um die Wurzel vorhanden bleibt, sobald der Zahn ausbricht1. Es wurde festgestellt, dass ERM-Zellen, die mit Zahnpulpa kokultiviert werden, sich in ameloblastenähnliche Zellen differenzieren und schmelzähnliches Gewebeerzeugen 6. Tiefgreifende Studien über die spezifische Rolle von ERM-Zellen bei der (Re-) Erzeugung von Zahnschmelzzellen waren jedoch aufgrund des Mangels an zuverlässigen Studienmodellen begrenzt7. Aktuelle ERM-In-vitro-Kultursysteme werden durch eine begrenzte Lebensdauer und einen schnellen Verlust des Phänotyps unter den standardmäßig verwendeten 2D-Bedingungen 8,9,10,11,12 behindert. Daher ist ein handhabbares In-vitro-System zur originalgetreuen Erweiterung, Untersuchung und Differenzierung menschlicher DESCs dringend erforderlich.
In den letzten zehn Jahren wurde eine leistungsfähige Technik zur Züchtung epithelialer Stammzellen in vitro erfolgreich auf verschiedene Arten von (menschlichen) Epithelgeweben angewendet, um ihre Biologie sowie die Krankheit13,14,15,16 zu untersuchen. Diese Technologie ermöglicht es den epithelialen Stammzellen des Gewebes, sich selbst zu 3D-Zellkonstruktionen (d. H. Organoiden) zu entwickeln, wenn sie in ein extrazelluläres Matrix (ECM) -imitierendes Gerüst (typischerweise Matrigel) gesät und in einem definierten Medium kultiviert werden, das die Stammzell-Nischensignalisierung des Gewebes und / oder die Embryogenese repliziert. Typische Wachstumsfaktoren, die für die Organoidentwicklung benötigt werden, sind der epidermale Wachstumsfaktor (EGF) und die wingless-Typ MMTV Integration Site (WNT) Aktivatoren14,15,16. Die resultierenden Organoide zeichnen sich durch dauerhafte Genauigkeit bei der Nachahmung der ursprünglichen Epithelstammzellen des Gewebes sowie durch eine hohe Erweiterbarkeit unter Beibehaltung ihres Phänotyps und ihrer funktionellen Eigenschaften aus, wodurch die oft begrenzte primäre Verfügbarkeit von menschlichem Gewebe, wie sie in der Klinik erworben wurde, überwunden wird. Um Organoide zu etablieren, ist eine Isolierung der epithelialen Stammzellen aus dem heterogenen Gewebe (d.h. bestehend aus anderen Zelltypen wie mesenchymalen Zellen) vor der Kultivierung nicht erforderlich, da mesenchymale Zellen nicht an das ECM binden oder darin gedeihen, was schließlich zu rein epithelialen Organoiden führt 13,16,17,18,19 . Diese vielversprechende und vielseitige Technologie hat zur Entwicklung vielfältiger Organoidmodelle aus verschiedenen menschlichen Epithelgeweben geführt. Aus menschlichem Zahn gewonnene Organoide, die für die eingehende Untersuchung der Zahnentwicklung, -regeneration und -krankheit wertvoll sind, wurden jedoch noch nicht etabliert20,21. Kürzlich ist es uns gelungen, ein solches neues Organoidmodell zu entwickeln, das von DF-Gewebe aus dritten Molaren (Weisheitszähnen) ausgeht, die von jugendlichen Patienten19 extrahiert wurden.
Hier beschreiben wir das Protokoll zur Entwicklung epithelialer Organoidkulturen aus dem erwachsenen menschlichen Zahn (d.h. aus dem DF der dritten Molaren) (Abbildung 1A). Die resultierenden Organoide exprimieren ERM-assoziierte Stammheitsmarker und sind gleichzeitig langfristig erweiterbar. Interessanterweise ist im Gegensatz zu den meisten anderen Organoidmodellen der normalerweise benötigte EGF für eine robuste Organoidentwicklung und -entwicklung redundant. Interessanterweise zeigen die Stammheitsorganoide Ameloblastendifferenzierungseigenschaften, wodurch ERM/DESC-Merkmale und -Prozesse nachgeahmt werden, die in vivo auftreten. Das hier beschriebene neue und einzigartige Organoidmodell ermöglicht die Erforschung der DESC-Biologie, Plastizität und Differenzierungskapazität und öffnet die Tür für die ersten Schritte in Richtung zahnregenerativer Ansätze.
Dieses Protokoll beschreibt die effiziente und reproduzierbare Erzeugung von Organoiden ausgehend vom menschlichen Zahn. Unseres Wissens ist dies die erste Methodik zur Etablierung von (epithelialen) Organoiden des aktuellen Konzepts, ausgehend von menschlichem Zahngewebe. Die Organoide sind langfristig expandierbar und zeigen einen Phänotyp der Zahnepithelstammigkeit, der DESCs dupliziert, die zuvor im ERM-Kompartiment des DF7 berichtet wurden. Darüber hinaus replizieren die Organoide funktione…
The authors have nothing to disclose.
Wir danken allen Mitarbeiterinnen und Mitarbeitern der Mund-, Kiefer- und Gesichtschirurgie (MKA) der UZ Leuven sowie den Patienten für ihre unschätzbare Hilfe beim Sammeln frisch extrahierter dritter Molaren. Wir danken auch Dr. Reinhilde Jacobs und Dr. Elisabeth Tijskens für ihre Hilfe bei der Probensammlung. Diese Arbeit wurde durch Zuschüsse der KU Leuven (BOF) und der FWO-Flanders (G061819N) unterstützt. L.H. ist ein FWO Ph.D. Fellow (1S84718N).
1.5 mL Microcentrifuge tube | Eppendorf | 30120.086 | |
15 mL Centrifuge tube | Corning | 430052 | |
2-Mercaptoethanol | Sigma-Aldrich | M-6250 | |
48-well flat bottom plates | Corning | 3548 | |
50 mL Centrifuge tube | Corning | 430290 | |
A83-01 | Sigma-Aldrich | SML0788 | |
Agarose | Lonza | 50004 | |
Albumin Bovine (cell culture grade) | Serva | 47330.03 | |
AMELX antibody | Santa Cruz | sc-365284 | |
Amphotericin B | Gibco | 15200018 | |
B27 (without vitamin A) | Gibco | 12587-010 | |
Cassette | VWR | 7202191 | |
Catalase from bovine liver | Sigma-Aldrich | C100 | |
CD44 antibody | Abcam | ab34485 | |
Cell strainer, 40 µm | Falcon | 352340 | |
Cholera Toxin | Sigma-Aldrich | C8052 | |
Citric acid | Sigma-Aldrich | C0759 | |
CK14 antibody | Thermo Fisher Scientific | MA5-11599 | |
Collagenase IV | Gibco | 17104-019 | |
Cover glass | VWR | 6310146 | |
Cryobox | Thermo Scientific | 5100-0001 | |
Cryovial | Thermo Fisher Scientific | 375353 | |
Dimethylsulfoxide (DMSO) | Sigma-Aldrich | D2650 | |
Dispase II | Sigma-Aldrich | D4693 | |
DMEM 1:1 F12 without Fe | Invitrogen | 074-90715A | |
DMEM powder high glucose | Gibco | 52100039 | |
Dnase | Sigma-Aldrich | D5025-15KU | |
Donkey serum | Sigma-Aldrich | D9663 – 10ML | |
Embedding workstation, 220 to 240 Vac | Thermo Fisher Scientific | 12587976 | |
Ethanol absolute, ≥99.8% (EtOH) | Fisher Chemical | E/0650DF/15 | |
Fetal bovine serum (FBS) | Sigma-Aldrich | F7524 | |
FGF10 | Peprotech | 100-26 | |
FGF2 (= basic FGF) | R&D Systems | 234-FSE-025 | |
FGF8 | Peprotech | AF-100-25 | |
GenElute Mammaliam Total RNA Miniprep Kit | Sigma-Aldrich | RTN350-1KT | Includes 1% β-mercaptoethanol dissolved in lysis buffer |
Glass Pasteur pipette | Niko Mechanisms | 170-40050 | |
Glycine | VWR | 101194M | |
HEPES | Sigma-Aldrich | H4034 | |
IGF-1 | PeproTech | 100-11 | |
InSolution Y-27632 (ROCK inhibitor, RI) | Sigma-Aldrich | 688001 | |
Insulin from bovine pancreas | Sigma-Aldrich | I6634 | |
ITGA6 antibody | Sigma-Aldrich | HPA012696 | |
L-Glutamine | Gibco | 25030024 | |
Matrigel (growth factor-reduced; phenol red-free) | Corning | 15505739 | |
Microscope slide | Thermo Fisher Scientific | J1800AMNZ | |
Millex-GV Syringe Filter Unit, 0.22 μm | Millipore | SLGV033R | |
Minimum essential medium eagle (αMEM) | Sigma-Aldrich | M4526 | |
mouse IgG (Alexa 555) secondary antibody | Thermo Fisher Scientific | A-31570 | |
N2 | Gibco | 17502-048 | |
N-acetyl L-cysteine | Sigma-Aldrich | A7250 | |
Nicotinamide | Sigma-Aldrich | N0636 | |
Noggin | PeproTech | 120-10C | |
P63 antibody | Abcam | ab124762 | |
Pap Pen | Sigma-Aldrich | Z377821-1EA | Marking pen |
Paraformaldehyde (PFA), 16% | Merck | 8.18715 | |
Penicillin G sodium salt | Sigma-Aldrich | P3032 | |
Penicillin-streptomycin (Pen/Strep) | Gibco | 15140-122 | |
Petri dish | Corning | 353002 | |
Phosphate buffered saline (PBS) | Gibco | 10010-015 | |
Pipette (P20, P200, P1000) | Eppendorf or others | 2231300006 | |
Plastic transfer pipette (3.5 mL) | Sarstedt | 86.1171.001 | |
Rabbit IgG (Alexa 488) secondary antibody | Thermo Fisher Scientific | A21206 | |
RSPO1 | PeproTech | 120-38 | |
SB202190 (p38i) | Biotechne (Tocris) | 1264 | |
Scalpel (surgical blade) | Swann-Morton | 207 | |
SHH | R&D Systems | 464-SH-200 | |
Silicone molds (Heating block) | VWR | 720-1918 | |
Sodium Chloride (NaCl) | BDH | 102415K | |
Sodium Hydrogen Carbonate (NaHCO3) | Merck | 106329 | |
Sodium-pyruvate (C3H3NaO3) | Sigma-Aldrich | P-5280 | |
SOX2 antibody | Abcam | ab92494 | |
StepOnePlus | Thermo Fisher Scientific | Real-Time PCR System | |
Stericup-GP, 0.22 µm | Millipore | SCGPU02RE | |
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit, 0.22 μm | Millipore | SCGP00525 | |
Sterile 1000 μL pipette tips with filter | Greiner | 740288 | |
Sterile 20 μL pipette tips with filter | Greiner | 774288 | |
Sterile 200 μL pipette tips with and without filter | Greiner | 739288 | |
Sterile H2O | Fresenius | B230531 | |
Streptomycin sulfate salt | Sigma-Aldrich | S6501 | |
Superscript III first-strand synthesis supermix | Invitrogen | 11752-050 | Reverse transcription kit |
Tissue processor | Thermo Scientific | 12505356 | |
Transferrin | Serva | 36760.01 | |
Triton X-100 | Sigma | T8787-50ML | |
TrypLE express | Gibco | 12605-010 | |
Vectashield mounting medium+DAPI | Labconsult NV | H-1200 | Antifade mounting medium with DAPI |
WNT3a | Biotechne (Tocris) | 5036-WN-500 | |
Xylenes, 99%, for biochemistry and histology | VWR | 2,89,75,325 |