A caracterização espectrométrica em massa dos neuropeptídeos fornece informações de sequência, quantitação e localização. Este fluxo de trabalho otimizado não é apenas útil para estudos de neuropeptídeos, mas também para outros peptídeos endógenos. Os protocolos aqui fornecidos descrevem a preparação da amostra, aquisição de MS, análise de MS e geração de neuropeptídeos de banco de dados usando LC-ESI-MS, spotting MALDI-MS e imagens MALDI-MS.
Neuropeptídeos são moléculas de sinalização que regulam quase todos os processos fisiológicos e comportamentais, como desenvolvimento, reprodução, ingestão de alimentos e resposta a estressores externos. No entanto, os mecanismos bioquímicos e o complemento completo dos neuropeptídeos e seus papéis funcionais permanecem mal compreendidos. A caracterização desses peptídeos endógenos é dificultada pela imensa diversidade dentro dessa classe de moléculas sinalizadoras. Além disso, neuropeptídeos são bioativos em concentrações 100x – 1000x inferiores aos neurotransmissores e são propensos à degradação enzimática após a liberação sináptica. A espectrometria de massa (MS) é uma ferramenta analítica altamente sensível que pode identificar, quantificar e localizar analitos sem conhecimento a priori abrangente. É adequado para traçar neuropeptídeos globalmente e ajudar na descoberta de novos peptídeos. Devido à baixa abundância e alta diversidade química desta classe de peptídeos, vários métodos de preparação de amostras, parâmetros de aquisição de EM e estratégias de análise de dados foram adaptados a partir de técnicas de proteômica para permitir a caracterização ideal do neuropeptídeo. Aqui, são descritos métodos para isolar neuropeptídeos de tecidos biológicos complexos para caracterização, quantitação e localização de sequências usando cromatografia líquida (LC)-MS e desorpção/ionização a laser assistida por matriz (MALDI)-MS. Um protocolo para preparar um banco de dados de neuropeptídeo do caranguejo azul, Callinectes sapidus, um organismo sem informações genômicas abrangentes, está incluído. Esses fluxos de trabalho podem ser adaptados para estudar outras classes de peptídeos endógenos em diferentes espécies usando uma variedade de instrumentos.
O sistema nervoso é complexo e requer uma rede de neurônios para transmitir sinais através de um organismo. O sistema nervoso coordena informações sensoriais e resposta biológica. As interações complexas e complicadas envolvidas na transmissão de sinais requerem muitas moléculas de sinalização diferentes, como neurotransmissores, esteroides e neuropeptídeos. Como os neuropeptídeos são as mais diversas e potentes moléculas de sinalização que desempenham papéis-chave na ativação de respostas fisiológicas ao estresse e outros estímulos, é de interesse determinar seu papel específico nesses processos fisiológicos. A função neuropeptídeo está relacionada à sua estrutura de aminoácidos, que determina mobilidade, interação receptora e afinidade1. Técnicas como a histoquímica, importante porque os neuropeptídeos podem ser sintetizados, armazenados e liberados em diferentes regiões do tecido, e a eletrofisiologia têm sido empregadas para investigar a estrutura e função do neuropeptídeo 2,3,4, mas esses métodos são limitados pelo throughput e especificidade para resolver a vasta diversidade sequencial de neuropeptídeos.
A espectrometria de massa (MS) permite a análise de alto rendimento da estrutura e abundância do neuropeptídeo. Isso pode ser realizado através de diferentes técnicas de EM, mais comumente cromatografia-eletrospraização líquida MS (LC-ESI-MS)5 e desorção/ionização a laser assistida por matriz (MALDI-MS)6. Utilizando medidas de massa de alta precisão e fragmentação de MS, a MS fornece a capacidade de atribuir sequência de aminoácidos e status de modificação pós-translacional (PTM) a neuropeptídeos de misturas complexas sem conhecimento a priori para ajudar na verificação de sua função 7,8. Além das informações qualitativas, a MS permite informações quantitativas de neuropeptídeos por meio de quantitação sem rótulos (LFQ) ou métodos baseados em rótulos, como rotulagem isotópica ou isobárica9. As principais vantagens do LFQ incluem sua simplicidade, baixo custo de análise e diminuição das etapas de preparação da amostra que podem minimizar a perda de amostras. No entanto, as desvantagens do LFQ incluem o aumento dos custos de tempo do instrumento, pois requer múltiplas réplicas técnicas para lidar com o erro quantitativo da variabilidade run-to-run. Isso também leva a uma diminuição da capacidade de quantificar com precisão pequenas variações. Os métodos baseados em rótulos são submetidos a uma variação menos sistemática, pois várias amostras podem ser rotuladas diferencialmente usando uma variedade de isótopos estáveis, combinados em uma amostra, e analisados através de espectrometria de massa simultaneamente. Isso também aumenta o rendimento, embora rótulos isotópicos possam ser demorados e caros para sintetizar ou comprar. A complexidade espectral do espectro de massa de varredura completa (MS1) também aumenta à medida que o multiplexing aumenta, o que diminui o número de neuropeptídeos únicos capazes de ser fragmentados e, portanto, identificados. Por outro lado, a rotulagem isobárica não aumenta a complexidade espectral no nível MS1, embora introduza desafios para analitos de baixa abundância, como neuropeptídeos. Como a quantitação isobárica é realizada no nível de espectro de massa de íons de fragmento (MS2), neuropeptídeos de baixa abundância podem ser incapazes de ser quantificados, pois componentes matriciais mais abundantes podem ser selecionados para fragmentação e aqueles selecionados podem não ter abundância alta o suficiente para serem quantificados. Com rotulagem isotópica, a quantitação pode ser realizada em todos os peptídeos identificados.
Além da identificação e quantificação, as informações de localização podem ser obtidas pela MS através de imagens MALDI-MS (MALDI-MSI)10. Ao rasterar um laser através de uma superfície de amostra, os espectros ms podem ser compilados em uma imagem de mapa de calor para cada valor m/z . Mapear a intensidade do sinal de neuropeptídeo transitório em diferentes regiões em condições pode fornecer informações valiosas para a determinação da função11. A localização de neuropeptídeos é especialmente importante porque a função neuropeptídeo pode diferir dependendo do local12.
Neuropeptídeos são encontrados em menor abundância in vivo do que outras moléculas de sinalização, como neurotransmissores, e assim requerem métodos sensíveis para detecção13. Isso pode ser alcançado através da remoção de componentes de matriz de maior abundância, como lipídios11,14. Considerações adicionais para a análise de neuropeptídeos precisam ser feitas quando comparadas aos fluxos de trabalho proteômicos comuns, principalmente porque a maioria das análises neuropeptidômicas omitem a digestão enzimática. Isso limita as opções de software para análise de dados de neuropeptídeos, pois a maioria foi construída com algoritmos baseados em dados de proteômica e correspondências de proteínas informadas pela detecção de peptídeos. No entanto, muitos softwares como o PEAKS15 são mais adequados à análise de neuropeptídeos devido às suas capacidades de sequenciamento de novo. Vários fatores precisam ser considerados para a análise de neuropeptídeos a partir do método de extração à análise de dados em MS.
Os protocolos descritos aqui incluem métodos para preparação de amostras e rotulagem isotópica de dimetila, aquisição de dados e análise de dados de neuropeptídeos por LC-ESI-MS, MALDI-MS e MALDI-MS. Através de resultados representativos de vários experimentos, demonstra-se a utilidade e a capacidade desses métodos de identificar, quantificar e localizar neuropeptídeos de caranguejos azuis, Callinectes sapidus. Para entender melhor o sistema nervoso, os sistemas de modelos são comumente usados. Muitos organismos não têm um genoma totalmente sequenciado disponível, o que impede a descoberta abrangente de neuropeptídeos no nível do peptídeo. Para mitigar esse desafio, está incluído um protocolo de identificação de novos neuropeptídeos e mineração de transcriptome para gerar bancos de dados para organismos sem informações completas do genoma. Todos os protocolos aqui apresentados podem ser otimizados para amostras de neuropeptídeos de qualquer espécie, bem como aplicados para a análise de quaisquer peptídeos endógenos.
A identificação precisa, quantificação e localização de neuropeptídeos e peptídeos endógenos encontrados no sistema nervoso são cruciais para entender sua função23,24. A espectrometria de massa é uma técnica poderosa que pode permitir que tudo isso seja realizado, mesmo em organismos sem um genoma totalmente sequenciado. A capacidade deste protocolo de detectar, quantificar e localizar neuropeptídeos a partir de tecido coletado de C. sapidus</e…
The authors have nothing to disclose.
Esta pesquisa foi apoiada pela National Science Foundation (CHE-1710140 e CHE-2108223) e Institutos Nacionais de Saúde (NIH) através da bolsa R01DK071801. A.P. foi apoiada em parte pela NiH Chemistry-Biology Interface Training Grant (T32 GM008505). N.V.Q. foi apoiado em parte pelos Institutos Nacionais de Saúde, sob o Prêmio Nacional de Serviço de Pesquisa Ruth L. Kirschstein do National Heart Lung and Blood Institute para o Centro de Pesquisa Cardiovascular da Universidade de Wisconsin-Madison (T32 HL007936). L.L. gostaria de reconhecer as bolsas NIH R56 MH110215, S10RR029531 e S10OD025084, bem como o apoio de financiamento de um Professor de Conquista Distinto de Vilas e Professor de Charles Melbourne Johnson com financiamento fornecido pela Wisconsin Alumni Research Foundation e pela University of Wisconsin-Madison School of Pharmacy.
Chemicals, Reagents, and Consumables | |||
2,5-Dihydroxybenzoic acid (DHB) matrix | Supelco | 39319 | |
Acetic acid | Fisher Chemical | A38S-500 | |
Acetonitrile Optima LC/MS grade | Fisher Chemical | A955-500 | |
Ammonium bicarbonate | Sigma-Aldrich | 9830 | |
Borane pyridine | Sigma-Aldrich | 179752 | |
Bruker peptide calibration mix | Bruker Daltonics | NC9846988 | |
Capillary | Polymicro | 1068150019 | to make nanoflow column (75 µm inner diameter x 360 µm outer diameter) |
Cryostat cup | Sigma-Aldrich | E6032 | any cup or mold should work |
Microcentrifuge Tubes | Eppendorf | 30108434 | |
Formaldehyde | Sigma-Aldrich | 252549 | |
Formaldehyde – D2 | Sigma-Aldrich | 492620 | |
Formic acid Optima LC/MS grade | Fisher Chemical | A117-50 | |
Gelatin | Difco | 214340 | place in 37 °C water bath to melt |
Hydrophobic barrier pen | Vector Labs | 15553953 | |
Indium tin oxide (ITO)-coated glass slides | Delta Technologies | CB-90IN-S107 | 25 mm x 75 mm x 0.8 mm (width x length x thickness) |
LC-MS vials | Thermo | TFMSCERT5000-30LVW | |
Methanol Optima LC/MS Grade | Fisher Chemical | A456-500 | |
Parafilm | Sigma-Aldrich | P7793 | Hydrophobic film |
pH-Indicator strips | Supelco | 109450 | |
Red phosphorus clusters | Sigma-Aldrich | 343242 | |
Reversed phase C18 material | Waters | 186002350 | manually packed into nanoflow column |
Wite-out pen | BIC | 150810 | |
ZipTip | Millipore | Z720070 | |
Instruments and Tools | |||
Automatic matrix sprayer system- M5 | HTX Technologies, LLC | ||
Centrifuge – 5424 R | Eppendorf | 05-401-205 | |
Cryostat- HM 550 | Thermo Fisher Scientific | 956564A | |
Desiccant | Drierite | 2088701 | |
Forceps | WPI | 501764 | |
MALDI stainless steel target plate | Bruker Daltonics | 8280781 | |
Pipet-Lite XLS | Rainin | 17014391 | 200 µL |
Q Exactive Plus Hybrid Quadrupole-Orbitrap | Thermo Fisher Scientific | IQLAAEGAAPFALGMBDK | |
RapifleX MALDI-TOF/TOF | Bruker Daltonics | ||
SpeedVac – SVC100 | Savant | SVC-100D | |
Ultrasonic Cleaner | Bransonic | 2510R-MTH | for sonication |
Ultrasonic homogenizer | Fisher Scientific | FB120110 | FB120 Sonic Dismembrator with CL-18 Probe |
Vaccum pump- Alcatel 2008 A | Ideal Vacuum Products | P10976 | ultimate pressure = 1 x 10-4 Torr |
Vortex Mixer | Corning | 6775 | |
Water bath (37C) – Isotemp 110 | Fisher Scientific | 15-460-10 | |
Data Analysis Software | |||
Expasy | https://web.expasy.org/translate/ | ||
FlexAnalysis | Bruker Daltonics | ||
FlexControl | Bruker Daltonics | ||
FlexImaging | Bruker Daltonics | ||
PEAKS Studio | Bioinformatics Solutions, Inc. | ||
SCiLS Lab | https://scils.de/ | ||
SignalP 5.0 | https://services.healthtech.dtu.dk/service.php?SignalP-5.0 | ||
tBLASTn | http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&BLAST_ PROGRAMS=tblastn&PAGE_ TYPE=BlastSearch&SHOW_ DEFAULTS=on&LINK_LOC =blasthome |