Summary

非创伤性脑室内出血啮齿动物模型中的颅内压监测

Published: February 08, 2022
doi:

Summary

监测非创伤性脑室内出血啮齿动物模型中的颅内压在目前的文献中并不常见。在本文中,我们展示了一种在大鼠动物模型中测量脑室内出血期间颅内压、平均动脉压和脑灌注压的技术。

Abstract

脑室内出血的幸存者通常留下明显的长期记忆障碍;因此,利用脑室内出血动物模型进行研究至关重要。在这项研究中,我们寻找了测量大鼠非创伤性脑室内出血期间颅内压、平均动脉压和脑灌注压的方法。实验设计包括三个Sprague Dawley组:假,标准200μl脑室内出血和载体对照组。通过引入实质内光纤压力传感器,在所有组中都获得了精确的颅内压测量值。根据颅内压和平均动脉压值的知识计算脑灌注压。正如预期的那样,脑室内出血组和载体对照组在脑室内注射自体血和人工脑脊液时,颅内压均分别升高,随后脑灌注压下降。增加实质内光纤压力传感器有利于监测精确的颅内压变化。

Introduction

脑室内出血(IVH)是颅内出血(ICH)的一种,是一种毁灭性的疾病,具有很高的死亡率和发病率。IVH的特征是血液制品在颅内脑室内的积聚。孤立性脑室内出血不常见,通常发生在成人1.它可能与高血压出血、颅内动脉瘤破裂或其他血管畸形、肿瘤或创伤有关1.IVH导致继发性脑损伤以及脑积水的发展2。IVH的幸存者在受伤后通常会留下明显的功能,记忆和认知障碍。据报道,这些长期认知和记忆缺陷在高达44%的非物质文化遗产3幸存者中。在蛛网膜下腔出血(SAH)中,另一种类型的ICH中,众所周知,大约一半的幸存者会有记忆缺陷,对于那些除了SAH之外还有IVH的患者,结果往往明显更差456

IVH后记忆功能障碍的潜在机制仍有待阐明。利用具有功能和记忆功能障碍的非创伤性IVH动物模型进行体内研究对于发现此类患者的潜在治疗靶点至关重要。IVH后记忆和功能障碍更严重的动物模型将是研究这些变化的最佳方法。资深作者的实验室也一直在专门研究高颅内压(ICP)在IVH大鼠模型中记忆缺陷发展中的作用。因此,在IVH期间精确测量ICP的方法对于研究非常重要。在本文中,我们报告了在IVH大鼠模型中精确测量ICP的方法。虽然ICP监测以前已用于创伤性ICH和蛛网膜下腔出血动物模型,但自发性IVH啮齿动物模型中的ICP监测并不像文献中常见报道的那样78。因此,本文提出的实验设计包括三组Sprague Dawley大鼠:假手术、标准200μl脑室内出血和载体对照。IVH组采用自体脑室内注射血液模型。对于载体对照动物,使用无菌乳酸林格氏溶液的心室内注射。术中记录ICPs、平均动脉压(MAP)和脑灌注压(CPP),结果在此报告。

Protocol

所有研究方法和动物护理/维护均按照加州大学戴维斯分校的机构指南进行。加州大学戴维斯分校的机构动物护理和使用委员会(IACUC)批准了所有动物使用方案和实验程序(IACUC协议#21874)。 1. 动物饲养 获得8-10个月大的Sprague-Dawley大鼠。在任何实验程序之前,将大鼠饲养在动物饲养室中,并在随意进食和水的12小时光照/黑暗循环后,在笼子中允许至少1周?…

Representative Results

颅内、平均动脉和脑灌注压在所有动物的术中监测ICP和MAP(图1)。大鼠年龄为8-10个月大,平均体重为495±17克。还收集了实时ICP图(图2)。排除假手术组,IVH和载体对照组在脑室内注射期间ICP显着增加(图3)。与车辆对照组(36.5 mmHg)相比,IVH组(43 mmHg)的ICP峰值更高。然后,在这些动物组中,ICP在脑室?…

Discussion

本研究调查了在非创伤性IVH大鼠模型中测量ICP,MAP和CPP的机制。记录以下组的结果:假,VH 200μL和载体对照(人工脑脊液脑室内注射)动物。选择该实验设计来研究如何在IVH注射期间监测ICP,因为我们假设ICP的峰值可能导致更显着的继发性脑损伤,从而导致IVH动物模型中的记忆缺陷。因此,本研究的目标是建立一个IVH动物模型,客观监测非创伤性IVH后的ICP,MAP和CPP,以便我们可以在未来的实验中?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由NINDS资助:K08NS105914

Materials

0.25% bupivacaine Hospira, Inc. 409115901
1 mL syringe Covetrus 60734
10% providine iodine solution Aplicare MSD093947
20 mL syringe Covidien 8881520657
22 G needles Becton Dickinson 305155
28 G intraventricular needles P technologies 8IC313ISPCXC C313I/SPC 28-Gneedles to fit 22-G guide cannula with 6 mm projection
3-0 silk suture Henry Schein, Inc. SP116
3-way-stopcock Merti Medical Systems M3SNC
4% paraformaldehyde Fisher Chemical 30525-89-4
AnyMaze software Any-Maze behavioral tracking software Stoelting CO, USA
Artificial ointment Covetrus 48272
Blood collection vials with EDTA Becton Dickinson 367856
Bone wax CP Medical, Inc. CPB31A
Carprofen Zoetis, Inc. 54771-8507-1
Centrifuge Beckman BE-GS6R Model GS-6R
Cotton tip applicators Covetrus 71214
Drill Dremel 1600A011JA
Fiberoptic pressure sensors with readout units Opsens Medical OPP-M200-X-80SC- 2.0PTFE-XN-100PIT-P1 and LIS-P1-N-62SC Opp-M200 packaged pressure sensors with LifeSens system
Forceps 11923-13, 11064-07
Gauze Covetrus 71043
Guillotine World Precision Instruments 51330
Heating pad with rectal thermometer CWE, Inc. 08-13000 ,08-13014 TC1000 Temperature controller
Hemostats  13013-14,  13008-12
Isoflurane Covetrus 29405
Lactated ringers Baxter Healthcare Corp. Y345583
Laryngoscope American Diagnostic Corporation 4080
Metal clip Fine Scientic Tools 18056-14
Micro scissors Fine Scientic Tools 15007-08
Microscope Leica model L2
Needle driver 12003-15
Polyethylene tubing Thermo Fisher Scientific 14-170-12B PE-50 tubing
Rats Envigo Sprague Dawley rats 8–10 months old
Scalpel  10010-00
Scissors 14090-11
Stereotaxic instrument Kopf instruments Model 940 with ear bars
Syringe pump KD Scientific 780100 Model 100 series
Touhy Borst Abbott 23242
Ventilator Harvard rodent ventilator 55-0000 Model 683

Riferimenti

  1. Gates, P. C., Barnett, H. J. M., Vinters, H. V., Simonsen, R. L., Siu, K. Primary intraventricular hemorrhage in adults. Stroke. 17, 872-877 (1986).
  2. Strajle, J., Garton, H. J. L., Maher, C. O., Muraszko, K., Keep, R. F., Xi, G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Translational Stroke Research. 3, 25-38 (2012).
  3. Murao, K., Rossi, C., Cordonnier, C. Intracerebral hemorrhage and cognitive decline. Revue Neurologique. 169, 772-778 (2013).
  4. Al-Khindi, T., Macdonald, R. L., Schweizer, T. A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 41, 519-536 (2010).
  5. Kreiter, K. T., et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 33, 200-208 (2002).
  6. Zanaty, M., et al. Intraventricular extension of an aneurysmal subarachnoid hemorrhage is an independent predictor of a worse functional outcome. Clinical Neurology and Neurosurgery. 170, 67-72 (2018).
  7. Gabrielian, L., Willshire, L. W., Helps, S. C., vanden Heuvel, C., Mathias, J., Vink, R. Intracranial pressure changes following traumatic brain injury in rats: lack of significant change in the absence of mass lesions or hypoxia. Journal of Neurotrauma. 28, 2103-2111 (2011).
  8. Kolar, M., Nohejlova, K., Duska, F., Mares, J., Pachl, J. Changes of cortical perfusion in the early phase of subarachnoid bleeding in a rat model and the role of intracranial hypertension. Physiological Research. 66, 545-551 (2017).
  9. Ariesen, M. J., Claus, S. P., Rinkel, G. J. E., Algra, A. Risk factors for intracerebral hemorrhage in the general population. A systematic review. Stroke. 34, 2060-2066 (2003).
  10. MacLellan, C. L., Paquette, R., Colbourne, F. A critical appraisal of experimental intracerebral hemorrhage research. Journal of Cerebral Blood Flow & Metabolism. 32, 612-627 (2012).
  11. Hartman, R., Lekic, T., Rojas, H., Tang, J., Zhang, J. H. Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Research. 1280, 148-157 (2009).

Play Video

Citazione di questo articolo
Peterson, C., Hawk, C., Puglisi, C. H., Waldau, B. Intracranial Pressure Monitoring In Nontraumatic Intraventricular Hemorrhage Rodent Model. J. Vis. Exp. (180), e63309, doi:10.3791/63309 (2022).

View Video