在这里,我们提出了一种检测抗原显示病毒样颗粒(VLP)的中和表位的方案。使用包膜糖蛋白特异性单克隆抗体偶联至蛋白G偶联磁珠进行人免疫缺陷病毒(HIV)衍生VLP的免疫沉淀。随后使用病毒核心蛋白Gag特异性抗体对捕获的VLP进行SDS-PAGE和蛋白质印迹分析。
病毒样颗粒(VLP)捕获测定是一种免疫沉淀方法,通常称为”下拉测定”,用于纯化和分离显示抗原的VLP。表面抗原特异性抗体偶联并因此固定在固体和不溶性基质(如珠子)上。由于它们对靶抗原的高亲和力,这些抗体可以捕获用锚定在VLP膜包膜中的同源抗原修饰的VLP。该协议描述了抗原特异性抗体与蛋白A-或G-偶联磁珠的结合。在我们的研究中,检查了由组特异性抗原(Gag)病毒核心前体蛋白p55 Gag形成的人类免疫缺陷病毒(HIV)衍生的VLP,并显示HIV的包膜糖蛋白(Env)。利用针对Env中中和敏感表位的广泛中和抗体(bNAbs)捕获VLP。这里概述的VLP捕获测定代表了一种灵敏且易于执行的方法,以证明(i)VLP用相应的靶抗原修饰,(ii)表面抗原保留了其结构完整性,如测定中使用的bNAbs的表位特异性结合所证明的那样,以及(iii)在随后的蛋白质印迹分析中检测Gag蛋白所揭示的VLP的结构完整性。因此,利用bNAbs进行免疫沉淀有助于预测VLP疫苗是否能够在接种疫苗的人群中引发中和B细胞反应。我们预计该协议将为其他研究人员提供一种有价值且直接的实验方法来检查潜在的基于VLP的疫苗。
病毒样颗粒(VLP)类似于天然病毒颗粒结构,但缺乏病毒基因组,因此提供了高安全性1,2。VLP代表了一类由于其高免疫原性而日益发达的疫苗3,4,5,6,7。对于膜包膜VLP尤其如此,不仅可以显示同源病毒表面抗原,还可以显示异源抗原,例如肿瘤抗原8,9,10。 图1 提供了包膜抗原修饰的VLP结构的示例性概述。在基于VLP的疫苗的开发过程中,检测是必不可少的,能够分析VLP表面上显示的相应靶抗原。这种测定应有助于阐明颗粒疫苗的组成:(i)VLP是否用相应的表面抗原装饰?(ii)表面抗原是否保留了其天然结构,如中和抗体(bNAbs)的表位识别所证明的那样,以及(iii)由于检测到介导VLP形成的病毒蛋白,是否可以确认VLP的结构完整性?
图1:膜包膜VLP的示意图。 VLP由未成熟的前体Gag核心蛋白形成,并被来自宿主细胞的脂质膜包围。抗原,例如包膜糖蛋白,被掺入脂质膜并显示在VLP的表面(在右侧)。抗原特异性抗体可识别抗原。在左侧,显示了一个没有抗原修饰的秃头VLP。 请点击此处查看此图的放大版本。
特别是由人类免疫缺陷病毒1型(HIV-1)的病毒群特异性抗原(Gag)核心前体蛋白p55形成的VLP是疫苗开发中抗原显示的首选支架,因为抗体众多,并且ELISA试剂盒可用,能够对这些VLP11,12进行定量。HIV-1包膜糖蛋白(Env),即跨膜蛋白gp41(gp41-TM)和可溶性表面单元gp120(gp120-SU)形成异源二聚体,被掺入颗粒膜包膜中,是开发HIV感染疫苗的关键靶抗原13,14,15.在这些靶抗原中显示中和敏感表位是在疫苗中引发广泛中和抗体反应的先决条件。除了针对Gag蛋白的T细胞反应外,这被认为是预防HIV感染的重要相关性16。因此,在设计和生产装饰有靶标候选抗原的VLP时,随后对所显示抗原质量的分析是疫苗开发过程中的关键步骤。
免疫沉淀(IP)是一种广泛使用的技术,用于检测蛋白质 – 蛋白质相互作用和小规模纯化蛋白质复合物17。巴雷特 等人。1960年首次报道了知识产权的发展,然而,这种方法一直在不断进一步改进。IP通过使用通过偶联到珠子固定的抗原特异性抗体(诱饵)从溶液中捕获和分离靶抗原(猎物)18,19。在该协议中,我们展示了经典IP应用的变体,使用膜包膜p55 Gag形成的VLP作为猎物和bNAbs,其识别VLP表面上显示的包膜蛋白中的中和敏感表位作为诱饵蛋白。这种VLP捕获测定的成功应用有助于预测测试的抗原阳性VLP是否能够在接种疫苗的人群中引发中和B细胞反应。基于VLP的候选疫苗的这种免疫原性特性经常在小动物模型中得到证实20,21,22。
为了评估新开发的VLP候选疫苗的质量,VLP捕获测定已成功使用5,23,24。但是,已发布方法的数量是有限的。这里介绍的VLP捕获测定始于将Env特异性bNAbs固定在蛋白G偶联珠上,其与哺乳动物源性抗体的Fc区结合。用于固定所选抗体的典型基质是琼脂糖或磁珠。但是,磁珠有利于高通量应用25。在下一步中,显示靶抗原的VLP被bNAb包被的珠子捕获。由Env阳性VLP和固定的bNAb组成的形成的免疫复合物很容易使用磁铁富集。分离的免疫复合物在最后一步被洗脱。随后,VLP可以进行生物化学表征。在这里,我们使用p55 Gag病毒核心蛋白特异性抗体进行蛋白质印迹分析,以证明沉淀的靶标Env抗原不仅含有中和敏感的表位,而且还显示在Gag形成的VLP上。此外,病毒核心Gag蛋白的检测提高了捕获测定的灵敏度,因为VLP中的Gag蛋白比Env更丰富。在HIV-1中,Env蛋白仅以单位数或两位数存在26, 而超过3,500个Gag分子形成颗粒的核心27。
与其他用于检测蛋白质 – 蛋白质相互作用的技术相比28,29, VLP捕获测定为无法获得昂贵分析仪器的研究实验室提供了另一种方法。例如,透射电子显微镜分析(TEM),表面等离子体共振波谱(SPR)和纳米颗粒跟踪分析(NTA)可能是成本密集型的。这里介绍的捕获测定还允许稍后对捕获的抗原阳性VLP样品进行进一步的蛋白质表征,例如,分别采用凝胶电泳,免疫印迹,电子显微镜和质谱(MS)。考虑到在VLP捕获测定过程中保留了靶抗原的天然结构,还可以利用天然PAGE和随后的免疫印迹技术的性能。
VLP捕获测定代表了一种易于使用且灵敏的方法,用于检查VLP的修饰,其靶抗原暴露中和敏感表位,从而作为未来的候选疫苗的实用性。
在VLP捕获测定之前,评估VLP的形成和VLP生产者细胞系中靶抗原的表达。仪器方法是对抗原的细胞表面表达以及CFSN和沉淀VLP的抗原和病毒核心蛋白特异性ELISA进行流式细胞术分析。
VLP捕获测定的关键步骤是用捕获抗体包被磁珠 – 这里是bNAbs – 以及随后通过抗体包被的磁珠捕获抗原阳性VLP。用抗体成功包被磁珠取决于偶联免疫球蛋白(Ig)结合蛋白的选择。抗体的供体种类以及Ig类决定了蛋白G或蛋白A偶联珠是否优选。对于大多数物种和Ig类,蛋白质G是首选配体33。作为蛋白质A / G偶联珠的替代品,可以使用链霉亲和素珠用于生物素化抗体包衣。磁珠也可以与抗体共价偶联。
抗体包被的微球捕获VLP取决于彻底混合,足够的孵育时间,抗原丰度和捕获抗体的亲和力。根据我们的经验,抗体包被的微球与VLP样品的彻底混合最好方法是在室温或4°C下旋转1.5 mL管中>500μL的体积至少2小时。 另一个潜在的障碍是样本中的VLP数量太少。对于强结合靶抗原的抗体,低至15 ng的Gug蛋白的VLP输入通常允许利用蛋白质印迹分析轻松检测病毒核心蛋白的量。然而,低亲和力抗体需要更高的输入量,例如,100ng的Gag蛋白,以获得结论性结果(图3,bNAb 3)。
一些表面抗原容易发生蛋白酶降解。在这里,我们建议在VLP样品中添加蛋白酶抑制剂并在4°C下孵育。 宿主细胞蛋白和VLP对珠结合抗体的非特异性粘附很少被观察到,应该通过使用适当的阴性对照来排除,正如我们在这里使用模拟和秃头VLP样品以及同种型对照抗体所证明的那样。减少非特异性结合的策略包括延长洗涤步骤和在洗涤缓冲液中添加酪蛋白34。此外,还可以通过确定抗体与抗原显示VLP量的最佳比率来改进捕获测定。
在VLP捕获测定的最后一步中,我们描述了通过在还原Laemmli缓冲液中煮沸从珠子中洗脱免疫复合物。在此步骤中,将VLP拆开,并将捕获抗体和靶抗原与磁珠分离。值得注意的是,在随后的蛋白质印迹分析中使用的一抗的供体种类必须与捕获抗体的供体不同,以避免次要抗供体IgG HRP偶联抗体意外检测捕获抗体。
这里介绍的VLP捕获测定提供了一种易于使用且灵敏的方法,用于检测VLP表面上显示的结构完整靶抗原中的中和敏感表位。然而,捕获测定不能实现直接表位定量。使用bNAbs进行的ELISA有助于实现这一目的,并且应并行进行,特别是如果检查的VLP打算用于使用动物模型的临床前研究35。这是至关重要的,因为抗原的量可以与免疫动物中中和抗体反应的引发直接相关,如猪圆环病毒2型(PCV2)疫苗所示36。
理想的疫苗应导致激发针对病毒体表面上中和敏感表位的bNAbs。对这些表位的分析,特别是关于它们在颗粒疫苗表面的完整结构完整性,对于确定潜在的候选疫苗至关重要。这不仅适用于HIV衍生的VLP,也适用于正在开发的许多其他VLP疫苗37。例如,突出的基于 VLP 的疫苗来自非包膜或衣壳的亲本病毒,如人瘤病毒( HPV )。与仅由一种结构核心蛋白(即p55 Gag)形成并由源自VLP产生细胞的膜包裹的HIV-1颗粒不同,HPV颗粒仅由一种或两种结构核心蛋白组成38,39。同样,正如本文所介绍的包膜VLP一样,VLP捕获测定也可能适用于检测非包膜VLP的中和敏感表位。
作为捕获测定的替代方法,VLP样品可以直接进行天然PAGE,然后使用bNAbs和与HRP40偶联的适当二抗进行蛋白质印迹分析。然而,对于HIV Env修饰的VLP的分析,该测定的灵敏度较低,因为每个VLP只能预期少量的抗原蛋白。相比之下,捕获测定有助于检测每个VLP大量丰富的核心蛋白,在HIV衍生的VLP的情况下,超过3,500个Gag蛋白形成VLP27。这允许对Env中表位进行非常灵敏的间接检测,即使在VLP上的低密度下也是如此。
检查VLP表面抗原中和敏感表位的成熟方法数量有限。使用表位特异性抗体 – 荧光团偶联物和随后通过纳米颗粒跟踪分析(NTA)检测,可以标记VLP上显示的抗原,从而实现VLP的检测和定量。该方法也已成功开发和优化,用于呈现细胞表面标志物的外泌体41。此外,表面等离子体共振(SPR)光谱允许分析VLP上呈现的未偶联中和抗体与同源表位之间的相互作用。虽然VLP不适合更高通量的分析,但也可以用与金颗粒偶联的bNAbs和随后的透射电子显微镜(TEM)检查来标记42。
总之,VLP捕获测定提供了一些相当大的优势:(i)评估VLP表面上中和敏感表位的结构完整性,(ii)即使在VLP上以低密度显示时,抗原的灵敏和间接检测,以及(iii)该方法不需要成本密集型分析设备。
The authors have nothing to disclose.
这项工作得到了德国联邦教育和研究部的资助,资助计划Forschung an Fachhochschulen,合同编号为13FH767IA6和13FH242PX6到JS。图 1 和图 2 是使用 BioRender.com 创建的。
1.5 mL reaction tubes | Eppendorf | ||
10x PBS | gibco | 70011044 | |
4%–15% Mini-PROTEAN TGX stain-free protein gels | BioRad | 4568085 | |
Antibodies (bnAbs) | Polymun Scientic | ||
Isotype control antibody | invitrogen (Thermo Fisher Scientific) | 02-7102 | |
Chemidoc XRS+ imaging system | BioRad | 1708265 | |
Chicken anti-rabbit IgG HRP-coupled | Life technologies | A15987 | 1:5000 in TBS-T + 2 % (w/v) powdered milk |
Dynabeads Protein G Immunoprecipitation Kit | invitrogen (Thermo Fisher Scientific) | 10007D | includes buffers and washing solutions |
FreeStyle 293-F cells | invitrogen (Thermo Fisher Scientific) | R790-07 | |
FreeStyle 293 Expression Medium | invitrogen (Thermo Fisher Scientific) | 12338026 | |
Gel blotting papers | Whatman | GB005 | |
Glycine | Carl Roth | 0079 | blotting buffer |
Magnetic separation rack | New England Biolabs | S1509S | for 12 x 1.5 mL or 6 x 1.5 mL tubes |
Methanol | Carl Roth | 4627 | blotting buffer |
Mini-PROTEAN Tetra Cell electrophoresis system | BioRad | ||
Optima XE-90 ultracentrifuge | Beckman Coulter | ||
PageRuler prestained protein ladder | Thermo Scientific | 26616 | |
Polyvinylidene fluoride (PVDF) syringe filters, 0.45 µm | Carl Roth | KC89.1 | |
Powdered milk | Carl Roth | T145 | blocking buffer |
PVDF transfermembrane, 0.45 µm | Carl Roth | T830.1 | |
QuickTiter HIV p24 ELISA | Cell Biolabs | VPK-108-H | |
Rabbit polyclonal to HIV1 p55 + p24 + p17 | abcam | ab63917 | 1:2000 in TBS-T + 2 % (w/v) powdered milk |
Rotator | Heidolph | REAX2 | |
ROTI Load 1 (laemmli buffer) | Carl Roth | K929.1 | 4x concentrated reducing protein gel loading buffer |
ROTIPHORESE 10x SDS-PAGE | Carl Roth | 3060 | |
Sodium chloride | Carl Roth | 3957 | TBS-T buffer |
SuperSignal West Pico PLUS chemiluminescent substrate | Thermo Scientific | 34579 | |
SW28 rotor | Beckman Coulter | ||
Thermomixer | Cel Media | basic | |
Trans-Blot Turbo | BioRad | ||
Trehalose dihydrate | Carl Roth | 8897.2 | |
TRIS | Carl Roth | 5429 | blotting buffer |
TRIS hydrochloride | Carl Roth | 9090 | TBS-T buffer |
Tween-20 | Carl Roth | 9127 | TBS-T buffer |
Ultra Clear centrifuge tubes | Beckman Coulter | 344058 |