Diese Studie berichtet über einen neuartigen Ansatz zur Messung mehrerer mitochondrialer Funktionsparameter basierend auf Durchflusszytometrie und Doppelfärbung mit zwei fluoreszierenden Reportern oder Antikörpern, um Veränderungen des mitochondrialen Volumens, des mitochondrialen Membranpotentials, des reaktiven Sauerstoffgehalts, der mitochondrialen Atmungskettenzusammensetzung und der mitochondrialen DNA zu erkennen.
Mitochondrien sind wichtig für die Pathophysiologie vieler neurodegenerativer Erkrankungen. Änderungen des mitochondrialen Volumens, des mitochondrialen Membranpotentials (MMP), der mitochondrialen Produktion von reaktiven Sauerstoffspezies (ROS) und der Kopienzahl der mitochondrialen DNA (mtDNA) sind häufig Merkmale dieser Prozesse. Dieser Bericht beschreibt einen neuartigen, auf Durchflusszytometrie basierenden Ansatz zur Messung mehrerer mitochondrialer Parameter in verschiedenen Zelltypen, einschließlich humaner induzierter pluripotenter Stammzellen (iPSCs) und iPSC-abgeleiteter Neural- und Gliazellen. Diese flussbasierte Strategie verwendet lebende Zellen zur Messung des mitochondrialen Volumens, des MMP- und ROS-Spiegels sowie fixierte Zellen zur Schätzung von Komponenten der mitochondrialen Atmungskette (MRC) und mtDNA-assoziierte Proteine wie den mitochondrialen Transkriptionsfaktor A (TFAM).
Durch Co-Färbung mit fluoreszierenden Reportern, einschließlich MitoTracker Green (MTG), Tetramethylrhodaminethylester (TMRE) und MitoSox Red, können Veränderungen des mitochondrialen Volumens, des MMP und der mitochondrialen ROS quantifiziert und mit dem mitochondrialen Inhalt in Beziehung gesetzt werden. Die Doppelfärbung mit Antikörpern gegen MRC-Komplex-Untereinheiten und Translokase der äußeren Mitochondrienmembran 20 (TOMM20) ermöglicht die Beurteilung der MRC-Untereinheitsexpression. Da die Menge an TFAM proportional zur mtDNA-Kopienzahl ist, ergibt die Messung von TFAM pro TOMM20 eine indirekte Messung der mtDNA pro mitochondrialem Volumen. Das gesamte Protokoll kann innerhalb von 2-3 h durchgeführt werden. Wichtig ist, dass diese Protokolle die Messung mitochondrialer Parameter sowohl auf der Gesamtebene als auch auf der spezifischen Ebene pro mitochondrialem Volumen mittels Durchflusszytometrie ermöglichen.
Mitochondrien sind essentielle Organellen, die in fast allen eukaryotischen Zellen vorhanden sind. Mitochondrien sind für die Energieversorgung verantwortlich, indem sie Adenosintriphosphat (ATP) durch oxidative Phosphorylierung produzieren und als metabolische Vermittler für Biosynthese und Stoffwechsel fungieren. Mitochondrien sind tief an vielen anderen wichtigen zellulären Prozessen beteiligt, wie ROS-Generierung, Zelltod und intrazellulärer Ca2+-Regulation. Mitochondriale Dysfunktion wurde mit verschiedenen neurodegenerativen Erkrankungen in Verbindung gebracht, darunter Parkinson-Krankheit (PD), Alzheimer-Krankheit (AD), Huntington-Krankheit (HD), Friedreich-Ataxie (FRDA) und amyotrophe Lateralsklerose (ALS)1. Es wird auch angenommen, dass eine erhöhte mitochondriale Dysfunktion und mtDNA-Anomalie zum menschlichen Altern beitragen 2,3.
Verschiedene Arten von mitochondrialer Dysfunktion treten bei neurodegenerativen Erkrankungen auf, und Veränderungen des mitochondrialen Volumens, der MMP-Depolarisation, der Produktion von ROS und Veränderungen der mtDNA-Kopienzahl sind häufig 4,5,6,7. Daher ist die Fähigkeit, diese und andere mitochondriale Funktionen zu messen, von großer Bedeutung, um Krankheitsmechanismen zu untersuchen und potenzielle Therapeutika zu testen. Darüber hinaus ist angesichts des Mangels an Tiermodellen, die menschliche neurodegenerative Erkrankungen originalgetreu nachbilden, die Etablierung geeigneter In-vitro-Modellsysteme, die die menschliche Krankheit in Gehirnzellen rekapitulieren, ein wichtiger Schritt zu einem besseren Verständnis dieser Krankheiten und zur Entwicklung neuer Therapien 2,3,8,9.
Humane iPS-Zellen können verwendet werden, um verschiedene Gehirnzellen zu erzeugen, einschließlich neuronaler und nicht-neuronaler Zellen (dh Gliazellen), und mitochondriale Schäden im Zusammenhang mit neurodegenerativen Erkrankungen wurden in beiden Zelltypengefunden 3,10,11,12,13. Geeignete Methoden zur iPSC-Differenzierung in neuronale und gliale Linien stehen zur Verfügung14,15,16. Diese Zellen bieten eine einzigartige Mensch-Patienten-Plattform für die In-vitro-Krankheitsmodellierung und das Arzneimittelscreening. Da diese von Patienten stammen, liefern iPSC-abgeleitete Neuronen und Gliazellen Krankheitsmodelle, die genauer widerspiegeln, was beim Menschen passiert.
Bisher gibt es nur wenige komfortable und zuverlässige Methoden zur Messung mehrerer mitochondrialer Funktionsparameter in iPS-Zellen, insbesondere lebenden Neuronen und Gliazellen. Der Einsatz der Durchflusszytometrie bietet dem Wissenschaftler ein leistungsfähiges Werkzeug zur Messung biologischer Parameter, einschließlich der mitochondrialen Funktion, in einzelnen Zellen. Dieses Protokoll liefert Details für die Erzeugung verschiedener Arten von Gehirnzellen, einschließlich neuraler Stammzellen (NSCs), Neuronen und glialer Astrozyten aus iPSCs, sowie neuartige durchflusszytometrische Ansätze zur Messung mehrerer mitochondrialer Parameter in verschiedenen Zelltypen, einschließlich iPSCs und iPSC-abgeleiteten Neural- und Gliazellen. Das Protokoll bietet auch eine Co-Färbestrategie für die Verwendung der Durchflusszytometrie zur Messung des mitochondrialen Volumens, MMP, mitochondrialen ROS-Spiegels, MRC-Komplexe und TFAM. Durch die Einbeziehung von Messungen des mitochondrialen Volumens oder der mitochondrialen Masse ermöglichen diese Protokolle auch die Messung sowohl des Gesamtniveaus als auch des spezifischen Niveaus pro mitochondrialer Einheit.
Hierin befinden sich Protokolle zur Erzeugung von iPSC-abgeleiteten Neuronen und Astrozyten und zur Bewertung mehrerer Aspekte der mitochondrialen Funktion mittels Durchflusszytometrie. Diese Protokolle ermöglichen eine effiziente Umwandlung menschlicher iPS-Zellen in Neuronen und Glia-Astrozyten und die detaillierte Charakterisierung der mitochondrialen Funktion, hauptsächlich in lebenden Zellen. Die Protokolle bieten auch eine auf der Durchflusszytometrie basierende Strategie zur Erfassung und Analyse mehrerer mitoch…
The authors have nothing to disclose.
Wir danken dem Molecular Imaging Centre und der Flow Cytometry Core Facility an der Universität Bergen in Norwegen. Diese Arbeit wurde durch Mittel des Norwegian Research Council (Förderkennzeichen: 229652), Rakel og Otto Kr.Bruuns legat und des China Scholarship Council (Projektnummer: 201906220275) unterstützt.
anti-Oct4 | Abcam | ab19857, RRID:AB_445175 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody. |
anti-SSEA4 | Abcam | ab16287, RRID:AB_778073 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 594 goat anti-mouse IgG (1:800, Thermo Fisher Scientific, Catalog # A-11005) as secondary antibody. |
anti-Sox2 | Abcam | ab97959, RRID:AB_2341193 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody. |
anti-Pax6 | Abcam | ab5790, RRID:AB_305110 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody. |
anti-Nestin | Santa Cruz Biotechnology | sc-23927, RRID:AB_627994 | Primary Antibody; use as 1:50, 20 μL in 1000 μL staining solution; use Alexa Fluor ® 594 goat anti-mouse IgG (1:800, Thermo Fisher Scientific, Catalog # A-11005) as secondary antibody. |
anti-GFAP | Abcam | ab4674, RRID:AB_304558 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 594 goat anti-chicken IgG (1:800, Thermo Fisher Scientific, Catalog # A-11042) as secondary antibody. |
anti-S100β conjugated with Alexa Fluor 488 | Abcam | ab196442, RRID:AB_2722596 | Primary Antibody; use as 1:400, 2.5 μL in 1000 μL staining solution; |
anti-TH | Abcam | ab75875, RRID:AB_1310786 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody. |
anti-Tuj 1 | Abcam | ab78078, RRID:AB_2256751 | Primary Antibody; use as 1:1000, 1 μL in 1000 μL staining solution; use Alexa Fluor ® 594 goat anti-mouse IgG (1:800, Thermo Fisher Scientific, Catalog # A-11005) as secondary antibody. |
anti-Synaptophysin | Abcam | ab32127, RRID:AB_2286949 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody. |
anti-PSD-95 | Abcam | ab2723, RRID:AB_303248 | Primary Antibody; use as 1:100, 10 μL in 1000 μL staining solution; use Alexa Fluor ® 594 goat anti-chicken IgG (1:800, Thermo Fisher Scientific, Catalog # A-11042) as secondary antibody. |
anti-TFAM conjugated with Alexa Fluor 488 | Abcam | ab198308 | Primary Antibody; use as 1:400, 2.5 μL in 1000 μL staining solution; use mouse monoclonal IgG2b Alexa Fluor® 488 as an isotype control. |
anti-TOMM20 conjugated with Alexa Fluor 488 | Santa Cruz Biotechnology | Cat# sc-17764 RRID:AB_628381 | Primary Antibody; use as 1:400, 2.5 μL in 1000 μL staining solution; use mouse monoclonal IgG2a Alexa Fluor® 488 as an isotype control. |
anti-NDUFB10 | Abcam | ab196019 | Primary Antibody; use as 1:1000, 1 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody; use rabbit monoclonal IgG as an isotype control. |
anti-SDHA | Abcam | ab137040 | Primary Antibody; use as 1:1000, 1 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-rabbit IgG (1:400, Thermo Fisher Scientific, Catalog # A-11008) as secondary antibody; use rabbit monoclonal IgG as an isotype control. |
anti-COX IV | Abcam | ab14744, RRID:AB_301443 | Primary Antibody; use as 1:1000, 1 μL in 1000 μL staining solution; use Alexa Fluor ® 488 goat anti-mouse IgG (1:400, Thermo Fisher Scientific, Catalog # A-11001) as secondary antibody; use mouse monoclonal IgG as an isotype control. |
Activin A | PeproTech | 120-14E | Astrocyte differentiation medium ingredient |
ABM Basal Medium | Lonza | CC-3187 | Basal medium for astrocyte culture |
AGM SingleQuots Supplement Pack | Lonza | CC-4123 | Supplement for astrocyte culture |
Antibiotic-Antimycotic | Thermo Fisher Scientific | 15240062 | CDM ingredient |
Advanced DMEM/F-12 | Thermo Fisher Scientific | 12634010 | Basal medium for dilute Geltrex |
Bovine Serum Albumin | Europa Bioproducts | EQBAH62-1000 | Blocking agent to prevent non-specific binding of antibodies in immunostaining assays and CDM ingredient |
BDNF | PeproTech | 450-02 | DA neurons medium ingredient |
B-27 Supplement | Thermo Fisher Scientific | 17504044 | Astrocyte differentiation medium ingredient |
BD Accuri C6 Plus Flow Cytometer | BD Biosciences, USA | ||
Chemically Defined Lipid Concentrate | Thermo Fisher Scientific | 11905031 | CDM ingredient |
Collagenase IV | Thermo Fisher Scientific | 17104019 | Reagent for gentle dissociation of human iPSCs |
CCD Microscope Camera Leica DFC3000 G | Leica Microsystems, Germany | ||
Corning non-treated culture dishes | Sigma-Aldrich | CLS430589 | Suspension culture |
DPBS | Thermo Fisher Scientific | 14190250 | Used for a variety of cell culture wash |
DMEM/F-12, GlutaMAX supplement | Thermo Fisher Scientific | 10565018 | Astrocyte differentiation basal Medium |
EDTA | Thermo Fisher Scientific | 15575020 | Reagent for gentle dissociation of human iPSCs |
Essential 8 Basal Medium | Thermo Fisher Scientific | A1516901 | Basal medium for iPSC culture |
Essential 8 Supplement (50X) | Thermo Fisher Scientific | A1517101 | Supplement for iPSC culture |
EGF Recombinant Human Protein | Thermo Fisher Scientific | PHG0314 | Supplement for NSC culture |
FGF-basic (AA 10–155) Recombinant Human Protein | Thermo Fisher Scientific | PHG0024 | Supplement for NSC culture |
Fetal Bovine Serum | Sigma-Aldrich | 12103C | Medium ingredient |
FGF-basic | PeproTech | 100-18B | Astrocyte differentiation medium ingredient |
FCCP | Abcam | ab120081 | Eliminates mitochondrial membrane potential and TMRE staining |
Fluid aspiration system BVC control | Vacuubrand, Germany | ||
Formaldehyde (PFA) 16% | Thermo Fisher Scientific | 28908 | Cell fixation |
Geltrex | Thermo Fisher Scientific | A1413302 | Used for attachment and maintenance of human iPSCs |
GlutaMAX Supplement | Thermo Fisher Scientific | 35050061 | Supplement for NSC culture |
GDNF | Peprotech | 450-10 | DA neurons medium ingredient |
Glycine | Sigma-Aldrich | G8898 | Used for blocking buffer |
Ham's F-12 Nutrient Mix | Thermo Fisher Scientific | 31765027 | Basal medium for CDM |
Heregulin beta-1 human | Sigma-Aldrich | SRP3055 | Astrocyte differentiation medium ingredient |
Hoechst 33342 | Thermo Fisher Scientific | H1399 | Stain the nuclei for confocal image |
Heracell 150i CO2 Incubators | Fisher Scientific, USA | ||
IMDM | Thermo Fisher Scientific | 21980032 | Basal medium for CDM |
Insulin | Roche | 1376497 | CDM ingredient |
InSolution AMPK Inhibitor | Sigma-Aldrich | 171261 | Neural induction medium ingredient |
Insulin-like Growth Factor-I human | Sigma-Aldrich | I3769 | Astrocyte differentiation medium ingredient |
KnockOut DMEM/F-12 medium | Thermo Fisher Scientific | 12660012 | Basal medium for NSC culture |
Laminin | Sigma-Aldrich | L2020 | Promotes attachment and growth of neural cells in vitro |
Leica TCS SP8 STED confocal microscope | Leica Microsystems, Germany | ||
Monothioglycerol | Sigma-Aldrich | M6145 | CDM ingredient |
MitoTracker Green FM | Thermo Fisher Scientific | M7514 | Used for mitochondrial volume indicator |
MitoSox Red | Thermo Fisher Scientific | M36008 | Used for mitochondrial ROS indicator |
N-Acetyl-L-cysteine | Sigma-Aldrich | A7250 | Neural induction medium ingredient |
N-2 Supplement | Thermo Fisher Scientific | 17502048 | Astrocyte differentiation medium ingredient |
Normal goat serum | Thermo Fisher Scientific | PCN5000 | Used for blocking buffer |
Orbital shakers – SSM1 | Stuart Equipment, UK | ||
Poly-L-ornithine solution | Sigma-Aldrich | P4957 | Promotes attachment and growth of neural cells in vitro |
Poly-D-lysine hydrobromide | Sigma-Aldrich | P7405 | Promotes attachment and growth of neural cells in vitro |
Purmorphamine | STEMCELL Technologies | 72204 | Promotes DA neuron differentiation |
ProLong Gold Antifade Mountant | Thermo Fisher Scientific | P36930 | Mounting the coverslip for confocal image |
PBS 1x | Thermo Fisher Scientific | 18912014 | Used for a variety of wash |
Recombinant Human/Mouse FGF-8b Protein | R&D Systems | 423-F8-025/CF | Promotes DA neuron differentiation |
SB 431542 | Tocris Bioscience | TB1614-GMP | Neural Induction Medium ingredient |
StemPro Neural Supplement | Thermo Fisher Scientific | A10508-01 | Supplement for NSCs culture |
TrypLE Express Enzyme | Thermo Fisher Scientific | 12604013 | Cell dissociation reagent |
Transferrin | Roche | 652202 | CDM ingredient |
TRITON X-100 | VWR International | 9002-93-1 | Used for cells permeabilization in immunostaining assays |
TMRE | Abcam | ab113852 | Used for mitochondrial membrane potential staining |
Water Bath Jb Academy Basic Jba5 JBA5 Grant Instruments | Grant Instruments, USA |