Hier beschreiben wir ein optimiertes Protokoll für den retinalen Venenverschluss unter Verwendung von Rose Bengal und einem lasergesteuerten retinalen Bildgebungsmikroskopsystem mit Empfehlungen zur Maximierung der Reproduzierbarkeit in gentechnisch veränderten Stämmen.
Mausmodelle des retinalen Venenverschlusses (RVO) werden häufig in der Augenheilkunde verwendet, um hypoxisch-ischämische Verletzungen in der neuralen Netzhaut zu untersuchen. In diesem Bericht wird eine detaillierte Methode, die kritische Schritte aufzeigt, mit Empfehlungen zur Optimierung bereitgestellt, um konsistent erfolgreiche Okklusionsraten über verschiedene genetisch veränderte Mausstämme hinweg zu erreichen. Das RVO-Mausmodell besteht hauptsächlich aus der intravenösen Verabreichung eines Photosensibilisator-Farbstoffs, gefolgt von einer Laser-Photokoagulation unter Verwendung eines Netzhaut-Bildgebungsmikroskops, das an einem ophthalmogesteuerten Laser befestigt ist. Drei Variablen wurden als Determinanten der Okklusionskonsistenz identifiziert. Durch die Anpassung der Wartezeit nach der Verabreichung von Rosenbengalen und das Ausbalancieren der Basislinie und der experimentellen Laserleistung kann die Variabilität zwischen den Experimenten begrenzt und eine höhere Erfolgsrate von Okklusionen erreicht werden. Mit dieser Methode können Netzhauterkrankungen untersucht werden, die durch Netzhautödeme und hypoxisch-ischämische Verletzungen gekennzeichnet sind. Da dieses Modell Gefäßverletzungen induziert, kann es auch zur Untersuchung des Neurovaskulaturs, des neuronalen Todes und der Entzündung angewendet werden.
Der retinale Venenverschluss (RVO) ist eine häufige retinale Gefäßerkrankung, von der im Jahr 2015 weltweit etwa 28 Millionen Menschen betroffen waren1. RVO führt bei Erwachsenen und älteren Menschen im erwerbsfähigen Alter zu einem Rückgang und Verlust der Sehkraft, was eine anhaltende sehgefährdende Krankheit darstellt, die im nächsten Jahrzehnt voraussichtlich zunehmen wird. Einige der unterschiedlichen Pathologien der RVO umfassen hypoxisch-ischämische Verletzungen, Netzhautödeme, Entzündungen und neuronalen Verlust2. Derzeit ist die erste Behandlungslinie für diese Erkrankung die Verabreichung von vaskulären endothelialen Wachstumsfaktor-Inhibitoren (VEGF). Während die Anti-VEGF-Behandlung dazu beigetragen hat, Netzhautödeme zu verbessern, sind viele Patienten immer noch mit einem Rückgang des Sehvermögens konfrontiert3. Um die Pathophysiologie dieser Krankheit besser zu verstehen und mögliche neue Behandlungslinien zu testen, ist es notwendig, ein funktionelles und detailliertes RVO-Mausmodellprotokoll für verschiedene Mausstämme zu erstellen.
Es wurden Mausmodelle entwickelt, die das gleiche Lasergerät verwenden, das bei menschlichen Patienten verwendet wird, gepaart mit einem Bildgebungssystem, das auf die richtige Größe für eine Maus skaliert ist. Dieses Mausmodell der RVO wurde erstmals 20074 beschrieben und von Ebneter und anderen weiter etabliert 4,5. Schließlich wurde das Modell von Fuma et al. optimiert, um wichtige klinische Manifestationen von RVO wie das Netzhautödem6 zu replizieren. Seit das Modell zum ersten Mal berichtet wurde, haben viele Studien es mit der Verabreichung eines Photosensibilisator-Farbstoffs verwendet, gefolgt von der Photokoagulation der wichtigsten Netzhautvenen mit einem Laser. Die Menge und Art des verabreichten Farbstoffs, die Laserleistung und die Expositionszeit variieren jedoch signifikant zwischen den Studien, die diese Methode verwendet haben. Diese Unterschiede können oft zu einer erhöhten Variabilität des Modells führen, was die Replikation erschwert. Bis heute gibt es keine veröffentlichten Studien mit spezifischen Details über mögliche Wege zur Optimierung.
Dieser Bericht stellt eine detaillierte Methodik des RVO-Mausmodells im C57BL/6J-Stamm und einem Tamoxifen-induzierbaren endothelialen Caspase-9-Knockout-Stamm (iEC Casp9KO) mit einem C57BL/6J-Hintergrund vor, der für die RVO-Pathologie als Referenzstamm für eine genetisch veränderte Maus relevant ist. Eine frühere Studie hatte gezeigt, dass eine nicht-apoptotische Aktivierung der endothelialen Caspase-9 ein Netzhautödem auslöst und den neuronalen Tod fördert8. Die Erfahrung mit diesem Stamm half dabei, mögliche Modifikationen zu ermitteln und Einblicke in das RVO-Mausmodell zu geben, das auf andere genetisch veränderte Stämme anwendbar sein kann.
Das Maus-RVO-Modell bietet eine Möglichkeit, die RVO-Pathologie besser zu verstehen und potenzielle Therapeutika zu testen. Während das Maus-RVO-Modell in der Praxis weit verbreitet ist, besteht ein Bedarf an einem aktuellen detaillierten Protokoll des Modells, das seine Variabilität adressiert und die Optimierung des Modells beschreibt. Hier stellen wir einen Leitfaden mit Beispielen aus der Praxis zur Verfügung, was geändert werden kann, um die konsistentesten Ergebnisse in einer Kohorte von Versuchstieren zu erzi…
The authors have nothing to disclose.
Carprofen | Rimadyl | NADA #141-199 | keep at 4 °C |
Corn Oil | Sigma-Aldrich | C8267 | |
Fiber Patch Cable | Thor Labs | M14L02 | |
GenTeal | Alcon | 00658 06401 | |
Ketamine Hydrochloride | Henry Schein | NDC: 11695-0702-1 | |
Lasercheck | Coherent | 1098293 | |
Phenylephrine | Akorn | NDCL174478-201-15 | |
Phoneix Micron IV with Meridian, StreamPix, and OCT modules | Phoenix Technology Group | ||
Proparacaine Hydrochloride | Akorn | NDC: 17478-263-12 | keep at 4 °C |
Refresh | Allergan | 94170 | |
Rose Bengal | Sigma-Aldrich | 330000-5G | |
Tamoxifen | Sigma-Aldrich | T5648-5G | light-sensitive |
Tropicamide | Akorn | NDC: 174478-102-12 | |
Xylazine | Akorn | NDCL 59399-110-20 |