我々は、歯垢を濾過し、宿主細菌と共培養することによって、新しい細菌フィラムサッカリバクの成長困難なメンバーを単離する方法を実証する。
多くの細菌種は、標準的な方法を使用して実験室で培養することができず、地球上の微生物の多様性の大部分を研究する上で大きな障壁を引き起当てます。これらの培養されていない細菌を培養する新しいアプローチは、研究者が実験室で利用可能な強力なツールを使用して生理学とライフスタイルを効果的に研究できるようにする必要があります。フィラ放射線候補(CPR)は、地球上の生きている多様性の約15%を含む未培養細菌の最大のグループの一つです。このグループの最初の単離株は、サッカリバクテリアフィラムのメンバーでした, ‘ナノシンバクターの腸の株 TM7x. TM7xは、細菌宿主、 シャアリア・オドントリチカ、 株XH001と直接接触して共生として生きる異常に小さな細菌です。異常に小さい細胞サイズと共生生物としての生活様式を利用して、我々は歯垢からサッカリバクテリアを急速に培養するプロトコルを開発した。このプロトコルは、0.2 μmフィルターを介して歯垢の懸濁を濾過し、収集したサッカリバクテリア細胞を濃縮し、宿主生物の培養物に感染する方法を示します。得られたコカルチャーは、PCRにより正常な細菌培養および感染が確認されるように継代することができる。結果として得られるバイナリー培養は、実験室で維持され、将来の実験に使用することができる。汚染が可能である一方で、バイナリ培養は、宿主のさらなるフィルタリングおよび再感染、または感染したコロニーのバイナリ培養およびスクリーニングをめっきすることによって精製することができる。私たちは、このプロトコルが他のサンプルタイプや環境に拡大され、CPRにおけるより多くの種の栽培につながることを願っています。
細菌の新種を培養し、実験室に持ち込むことは、彼らの生理学と微生物群集内のより広範な相互作用をよりよく理解するための強力な実験を可能にする。これらの質問(例えば、「メタオミクス」など)を尋問する培養のない方法がありますが、多様な微生物集団の複雑な相互作用は、単一の変数を離れて意味のある結論に達することを困難にします。細菌を培養することは多くの利点を持っていますが、細菌を単離し、純粋な培養でそれを成長させる多くの潜在的な障壁があります。潜在的な特異的成長要件は、pH、酸素張力、ビタミン、成長因子、シグナル伝達分子、あるいは成長を引き起こす直接的な細胞接触を含む1。しかし、特定のオーソトロフィーが新種の細菌を培養する主な抑止力であると考えられています。標準的な培地製剤は、特定のビタミンや炭素源など、未栽培の細菌に必要な多くの栄養素を欠いている。これらの欠けている分子は、未培養細菌の生理学の鍵となり、通常は微生物群集の別の生物または宿主生物のいずれかによって提供される。例えば、ムチンのような複雑な炭水化物は、動物宿主によって提供され得る。これらを培地に添加することで、アッカーマンシア・ムチニフィラおよびムシニヴォラン・ヒルディニス2、3、4を含む動物の腸からいくつかの細菌の培養が可能になった。多くの病原性細菌は、動物細胞においてヘミンに結合した鉄を使用する能力を進化させたが、口腔病原体ポルフィロミナス歯肉5を含む。研究室では、ポルフィロマおよび他の生物の増殖は、ヘミン6の添加によって刺激され得る。
最近、細菌の新しい単離物を培養する上で多くのブレークスルーは、その成長に必要な未培養細菌に特定の要因を提供するために「フィーダー」生物を使用して、共培養を通じて来ています。Vartoukianたちの優雅な研究は、細菌によって産生される鉄結合分子であるシデロフォアが、いくつかの新しい経口単離物の成長を刺激することを示した。ピオベルジンは、シュードモナド種によって産生されるシデロフォアの一種であり、新しいプレボテラ種7の成長を著しく促進することが示された。同じ研究において、クロロルレクシの第1の経口単離物を栽培し、またF.核をヘルパーとして使用して、まだ未知の化合物7を提供する。さらに最近では、ルミノコッカス科属由来の細菌をヘルパー生物8としてバクテロイデス・フラジリスを用いて単離した。その後、ガンマアミノ酪酸(GABA)、抑制性神経伝達物質が、実験室のメディア上の成長に必要とされていたことが示されました。フィーダー生物を使用することは、培養されていない細菌が増殖する特定の微小環境を模倣するための重要な戦略であることが証明されており、様々な濃度で異なる添加物を持つ成長培地を継続的に再配合するよりも効率的であることが証明されています。
未培養細菌の最大のグループの一つは、「候補フィラ放射」(CPR)、いくつかの候補細菌フィラ9、10の単球群である。この書き込みの時点で、CPR内のサッカリバクテリアフィラムのメンバーだけが実験室で正常に培養されています。第1の単離物’ナノシンバクター・リチカス’株TM7xは、未培養TM711、12のために濃縮すると予測されていた抗生物質ストレプトマイシンを使用して単離した。この研究の重要な発見は、細菌宿主であるSchaalia odontolyticaと直接接触して成長する寄生虫として新しい単離物が成長し、顕微鏡検査はこれらの寄生虫が超小細菌であることを示した。
これらの手がかりを用いて、0.2μmのフィルターを通して歯垢やその他の経口サンプルを濾過し、遠心分離によって濾液中の細胞を採取し、それらを使用して候補宿主細菌の培養物に感染させることによって、サッカリバクテリアのバイナリコ培養をパートナーと迅速に確立する方法を考案しました。この方法は、急速に成長している生物で圧倒することができる濃縮文化を避けるという利点を有する。また、抗生物質の使用を避け、標的となるサッカリバクテリア種またはその宿主の成長を止めることができる。ここで示した方法を用いて、我々はサッカリバクテリアフィラムから32の分離株を培養することに成功した。
プラークを濾過し、宿主生物の純粋な培養物に適用する我々の方法は、主に最初に培養されたサッカリバクテリアに関する以前の観察に基づいている、 ‘ナノシンバクターリチカス’株TM7x11,14,15.小さな細胞サイズを考えると、フィルターを使用して歯垢から分離し、遠心分離で濃縮することができると推測した。第二に、これらの生物は寄生虫として生きており、これらの細胞に宿主の純粋な培養を提供することは、彼らが共生に入り、バイナリ培養として成長することを可能にする。
この方法の1つの利点は、濃縮培養または選択的圧力を必要としないことである。’ナノシンバクターの株 TM7xは、セレクティブ剤としてストレプトマイシンを用いた濃縮培養から培養され、シーケンシングはサッカリバクテリアの濃縮に有効であると示唆していた。幸運なことに、「ナノシンバクター・リチカスのシャリア・オドントリチカ」の宿主は、ストレプトマイシン16に耐性であることが知られている。抗生物質を選択的な薬剤として使用することは、宿主生物の増殖を防ぐことも可能であり、サッカリバクテリアの増殖を妨げるであろう。
エンリッチメント文化を使用するより大きな問題は、急速に成長している生物がすぐに関心のある生物を置き換えるということです。口腔内では、例えば、 ストレプトコッカス 種は、急速に成長することができ、かつ、糖が成長培地に存在する場合、培地を酸性化するのに十分な酸を産生し、さらに目的の生物に対して選択する。濃縮培養と選択的抗生物質を避けることによって、我々の方法は、これらの他の方法の合併症なしにサッカリバクテリアおよび潜在的な宿主のより広い範囲に適用することができる一般的なアプローチを提供する。
ここに示す方法には、いくつかの障害があります。まず、この方法は、サッカリバクテリアがバイナリー培養に住んでいると仮定する。私たちは、その有効性を測定するために三項または三項培養の組み合わせをテストしていませんが、単一の宿主生物が供給できない成長因子を必要とするサッカリバク菌がある可能性があります。サッカリバクテリアの増殖を支えることができる口腔内細菌の膨大な組み合わせをテストすることは困難な作業になります。第二に、この方法は、すべてのサッカリバクテリアが0.2 μmフィルターを通過するのに十分小さいと仮定する。他のサッカリバクテリアが信じられていたよりも大きく、フィルターがこれらの生物に対して選択している可能性があります。より大きな孔サイズのフィルターを使用することができますが、これは感染した共培養に多くの不要な口腔細菌を許可するリスクを実行します。最後に、すでに公開されているもの以外の宿主種を見つけることは非常に困難です。これまでのところ、唯一の成功した宿主は、属アクチノミセス、シャアリア、アラクニアおよびセルロシミオビウム、フィラムアクチノバクテリア15、17、18のすべてのメンバーからの種である。しかし、これらの宿主は特定のサッカリバクテリアの増殖のみをサポートする。サッカリバクテリアのより多くの種を培養するには、より多くの宿主を探索する必要があります。
ここで発表された方法が、サッカリバクテリアや他のCPR生物の将来の研究に役立つことを願っています。メタゲノムシーケンシングは、これらの生物も小さなゲノムを有し、共生であるか、または生存に不可欠な代謝産物および他の要因を供給するために地元の微生物群集に依存していると疑われていることを示唆している。同様のフィルタリング戦略は、これらの生物が十分に小さく、宿主生物を培養できる限り、これらの生物を分離するために使用することができる。ここで説明する方法は、この大規模で多様な細菌群に実験室培養の強力なツールをもたらす第一歩です。
The authors have nothing to disclose.
著者らは、アン・タナー、ブルース・パスター、ハイケ・ボワバート、シュエソン・ヘ、バトビレッグ・ボーが有益な議論をしてくれたことに感謝し、細菌株を提供してくれた。スーザン・ヨストとジェシカ・ウッズの微生物技術支援に感謝します。この出版物で報告された研究は、賞番号R37 DE016937(FED)、R01 DE024468(FED)およびT32 DE007327(AJC)の下で国立衛生研究所の国立歯頭顔面研究所によってサポートされました。コンテンツは著者の責任であり、必ずしも国立衛生研究所の公式見解を表すものではありません。
Agarose | Fisher Scientific | BP160-100 | |
Alphaimager | Cell Biosciences | FluorChem HD2 | Or equivalent UV gel imaging system |
Aluminum foil | Fisher Scientific | 01-213-101 | |
Brain Heart Infusion Broth (dehydrated powder) | Becton-Dickinson | 211059 | Or other growth media suitable for target organisms |
Centrifuge Rotor 70-Ti | Beckman Coulter | 337922 | |
Cryovials | Fisher Scientific | 12-567-500 | |
DMSO | Fisher Scientific | BP231-100 | |
Electrophoresis Power Supply | Bio-Rad | 1645052 | |
Electrophoresis Rig | Bio-Rad | 1704467 | |
Filter Forceps | Millipore Sigma | XX6200006P | Not essential, helps ensure filters are not punctured during handling |
Glycerol | Fisher Scientific | G33-500 | |
GoTaq Green Mastermix | Promega | M7122 | |
Mastercycler Pro Thermocycler | Eppendorf | 950040025 | Or equivalent thermocycler for PCR |
MgCl2 solution 25mM | Promega | A3513 | |
Molecular Biology grade water | Fisher Scientific | BP2819100 | |
O2 Control InVitro Glove Box | Coy Laoratories | 031615 | If needed for microaerobic organisms |
Optima L-100 XP High Speed Centrifuge | Beckman Coulter | 8043-30-1124 | |
P-10 micro pipette | Gilson | F144802 | |
P-1000 micro pipette | Gilson | F123601G | |
P-2 micro pipette | Gilson | F144801 | |
P-20 micro pipette | Gilson | F123600 | |
P-200 micro pipette | Gilson | F123602G | |
PBS | Fisher Scientific | BP399500 | |
PCR tubes 0.2 mL | Fisher Scientific | 14-230-205 | |
Peptone | Fisher Scientific | BP1420-500 | |
Pipette tips – 10 μL | Fisher Scientific | 02-717-157 | |
Pipette tips – 1000 μL | Fisher Scientific | 02-717-166 | |
Pipette tips – 20 μL | Fisher Scientific | 02-717-161 | |
Pipette tips – 200 μL | Fisher Scientific | 02-717-165 | |
Polycarbonate filters – 47mm, 0.2 μm pore size | Millipore | GTTP04700 | |
Screw-cap conical centrifuge tubes 15 mL | Falcon | 352096 | Or other tube suitable for bacterial culture |
Sodium chloride | Fisher Scientific | BP358-1 | |
Swin-Lok Filter – 47mm | Whatman | 4200400 | |
SYBR Safe DNA Gel stain | ThermoFisher Scientific | S33102 | |
Syringes – 20 mL | Fisher Scientific | 14-955-460 | |
TAE Buffer (50x) concentrate | Fisher Scientific | P1332500 | |
Thickwall Polycarbonate 25 x 89 mm (26.3mL capacity) centrifuge tubes with caps | Beckman Coulter | 355618 | |
Tryptic Soy Blood Agar Plates | Northeast Laboratory Services | P1100 | Or other agar plate sufficient for growth of host organisms |
Tryptic Soy Broth (dehydrated powder) | Becton-Dickinson | 211825 | Or other growth media suitable for target organisms |
Vinyl Anaerobic Chamber | Coy Laboratories | 032714 | If needed for anaerobic organisms |
Vortex mixer | Scientific Industries | SI-0236 | |
Yeast Extract | Fisher Scientific | BP1422-500 |