Summary

用于评估数学认知和基本技能的多媒体电池(BM-PROMA)

Published: August 28, 2021
doi:

Summary

BM-PROMA 是一种有效可靠的多媒体诊断工具,可为数学学习障碍儿童提供完整的认知特征。

Abstract

学习数学是一个复杂的过程,需要发展多个域通用和特定域的技能。因此,许多儿童难以保持年级水平并不出人意料,当这两个领域的几个能力受到损害时,这变得特别困难,例如数学学习障碍(MLD)。令人惊讶的是,虽然MLD是影响学童的最常见的神经发育障碍之一,但现有的大多数诊断仪器不包括对域名一般和特定领域技能的评估。此外,很少有计算机化。据我们所知,没有适合讲西班牙语的儿童的这些功能的工具。本研究的目的是描述使用BM-PROMA多媒体电池诊断西班牙MLD儿童的程序。BM-PROMA 有助于对这两个技能领域的评估,为此目的包括的 12 项任务都是基于经验证据的。展示了BM-PROMA及其多维内部结构的强大内部一致性。BM-PROMA 被证明是在初等教育期间诊断患有 MLD 的儿童的适当工具。它为孩子提供了广泛的认知特征,这不仅与诊断相关,而且与个性化教学规划相关。

Introduction

初等教育的关键目标之一是获得数学技能。这些知识是非常相关的,因为我们都在日常生活中使用数学,例如,计算超市1,2的变化。因此,数学成绩不佳的后果超出了学术范畴。在社会一级,人口中数学表现不佳的普遍现象给社会造成损失。有证据表明,人口中糟糕的数字技能的提高为一个国家节省了大量开支。在个人层面上也有负面后果。例如,那些数学技能水平低的人,职业发展欠佳(例如,低薪体力职业的就业率较高,失业率较高)4、5、6,经常报告对学者的负面社会情绪反应(例如焦虑、对学术动机低)7、8,并且往往比平均数学成就为9的同龄人表现出较差的身心健康。数学学习障碍(MLD)的学生表现非常差,持续10,11,12。因此,他们更有可能遭受上述后果,特别是如果这些没有及时诊断13。

MLD是一种神经生物学障碍,其特点是学习基本数值技能严重受损,尽管有足够的智力能力和学校教育14。虽然这一定义被广泛接受,但鉴定的文书和标准仍在讨论之中。MLD诊断缺乏普遍协议的一个很好的例证是报告的流行率,从3到10%16,17,18,19,20,21。诊断的这种困难源于数学知识的复杂性,这就要求在22、23年学习多个域名一般和域特定技能的组合。MLD儿童表现出非常不同的认知特征,有广泛的赤字星座14,24,25,26,27。在这方面,有人建议,需要通过涉及不同数字表示(即口头、阿拉伯语、类比)和算术技能的任务进行多维评估

在小学时,MLD的症状多种多样。在域名特定技能方面,人们不断发现,许多 MLD 学生在基本数值技能方面表现出困难,例如快速准确地识别阿拉伯数字28、29、30,比较震级31、32或表示数字行33、34。小学生在理解概念知识方面也表现出困难,如地点值35、算术知识36,或通过有序序列37测得的平度。关于域名一般技能,特别注重工作记忆38、39和语言40在有和没有MLD的儿童数学技能的发展中的作用。在工作记忆方面,结果显示,MLD的学生在中央行政机构中表现出不足,尤其是在需要操纵数字信息41,42时。在MLD43,44的儿童中,也经常报告存在病毒空间短期记忆缺陷。语言技能是学习算术技能的先决条件,尤其是那些涉及高语言处理需求的技能。例如,语音处理技能(例如,语音意识和快速自动化命名(RAN)与小学时学到的基本技能密切相关,如数值处理或算术计算39、45、46、47。在这里,已经证明,语音意识和RAN的变化与个人在算术技能的差异,涉及管理口头代码42,48。鉴于 MLD 儿童的复杂状况,诊断工具最好包括评估域名一般技能和特定域位技能的任务,据报道,这些技能在这些儿童中往往存在缺陷。

近年来,为MLD开发了几种纸笔筛选工具。西班牙小学生最常用的是 a)埃瓦马泰利亚·巴泰利亚·马泰马蒂卡竞争中心(数学能力评价电池)49:b) 泰迪数学:数学残疾诊断评估测试(西班牙语改编)50:c)测试德埃卢阿西翁马特马蒂卡坦普拉纳德乌得勒支(TEMT-U)5152, 乌得勒支早期算术测试53的西班牙语版本:d) 早期数学能力测试 (TEMA-3)54.这些文书衡量上述许多特定领域的技能:但是,他们都没有评估域名一般技能。这些仪器和一般纸和铅笔工具的另一个限制是,它们无法提供有关每个物品处理的准确性和自动性的信息。这只能用电脑电池。然而,很少有应用程序已经开发为计算障碍诊断。第一个计算机化的工具,旨在识别儿童(6至14岁)与MLD是Dyscalculia筛选器55。几年后,基于网络的DyscalculiUm56的开发目的相同,但侧重于16岁以后教育中的成年人和学习者。虽然仍然有限,但近年来对MLD诊断的计算机化工具设计的兴趣与日俱增。所提及的工具都没有为西班牙儿童标准化,其中只有一个工具 -MathPro 测试57– 包括域名一般技能评估。鉴于识别数学成就低的儿童,特别是那些有MLD的儿童的重要性,以及西班牙人口缺乏计算机化仪器,我们提出了一个多媒体评估协议,其中包括域名通用和特定领域的技能。

Protocol

这项议定书是根据拉古纳大学 “双星动物 研究伦理和动物福利委员会”提供的准则执行的。 注: 巴泰利亚多媒体公司 使用 Unity 2.0 专业版和 SQLITE 数据库引擎开发了61。 BM-PROMA 包括 12 个子测试:8 个子测试以评估特定域的技能,4 个子测试以评估域名一般流程。对于每个子测试,由动画类人机器人口头提供说明,并在测试阶段之前进行演示和两?…

Representative Results

为了测试这种诊断工具的效用和有效性,在大规模样本中对其心理特征进行了分析。共有933名西班牙小学生(男孩=508,女孩=425; M年龄 = 10 岁 ,SD = 1.36), 从 2 年级到 6 年级 (2 年级, N = 169 [89 男孩]; 3 年级, N = 170 [89 男孩]; 4 年级, N = 187 [106 男孩]; 5 年级, N = 203 [113 男孩]; 6 年级, N= 204 [110 男孩]参加了这项研究。这些儿童来自圣克鲁斯…

Discussion

患有MLD的儿童不仅有学业失败的危险,而且有精神情绪和健康障碍的风险,8、9和后来的就业剥夺4,5。因此,必须迅速诊断MLD,以便提供这些儿童所需要的教育支助。然而,诊断MLD是复杂的,由于多个域特定和域一般技能缺陷,导致紊乱22,23。BM-PROMA 是少数使用?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢西班牙政府通过其 国家I+D+i计划 (西班牙经济和竞争力部国家研究计划)对项目参考的支持:PET2008_0225,第二作者为主要调查员;和康尼西特 – 智利 [方德西特定期诺1191589], 第一作者作为主要调查员。我们还感谢 ULL 视听联合 团队参与视频制作。

Materials

Multimedia Battery for Assessment of Cognitive and Basic Skills in Maths Universidad de La Laguna Pending assignment BM-PROMA

Riferimenti

  1. Henik, A., Gliksman, Y., Kallai, A., Leibovich, T. Size Perception and the Foundation of Numerical Processing. Current Directions in Psychological Science. 26 (1), 45-51 (2017).
  2. Henik, A., Rubinsten, O., Ashkenazi, S. The “where” and “what” in developmental dyscalculia. Clinical Neuropsychologist. 25 (6), 989-1008 (2011).
  3. Ghisi, M., Bottesi, G., Re, A. M., Cerea, S., Mammarella, I. C. Socioemotional features and resilience in Italian university students with and without dyslexia. Frontiers in Psychology. 7, 1-9 (2016).
  4. Parsons, S., Bynner, J. Numeracy and employment. Education + Training. 39 (2), 43-51 (1997).
  5. Sideridis, G. D. International Approaches to Learning Disabilities: More Alike or More Different. Learning Disabilities Research & Practice. 22 (3), 210-215 (2007).
  6. Duncan, G. J., et al. School Readiness and Later Achievement. Developmental Psychology. 43 (6), 1428-1446 (2007).
  7. Wu, S. S., Barth, M., Amin, H., Malcarne, V., Menon, V. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement. Frontiers in Psychology. 3, 162 (2012).
  8. Reyna, V. F., Brainerd, C. J. The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making. Learning and Individual Differences. 17 (2), 147-159 (2007).
  9. Geary, D. C., Hoard, M. K., Nugent, L., Bailey, D. H. Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of Educational Psychology. 104 (1), 206-223 (2012).
  10. Kaufmann, L., et al. Dyscalculia from a developmental and differential perspective. Frontiers in Psychology. 4, 516 (2013).
  11. Wong, T. T. Y., Chan, W. W. L. Identifying children with persistent low math achievement: The role of number-magnitude mapping and symbolic numerical processing. Learning and Instruction. 60, 29-40 (2019).
  12. Haberstroh, S., Schulte-Körne, G. Diagnostik und Behandlung der Rechenstörung. Deutsches Arzteblatt International. 116 (7), 107-114 (2019).
  13. Kaufmann, L., von Aster, M. The diagnosis and management of dyscalculia. Deutsches Ärzteblatt international. 109 (45), 767-777 (2012).
  14. Murphy, M. M., Mazzocco, M. M., Hanich, L. B., Early, M. C. Children With Mathematics Learning Disability (MLD) Vary as a Function of the Cutoff Criterion Used to Define MLD. Journal of learning disabilities. 40 (5), 458-478 (2007).
  15. Ramaa, S., Gowramma, I. P. A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia. 8 (2), 67-85 (2002).
  16. Dirks, E., Spyer, G., Van Lieshout, E. C. D. M., De Sonneville, L. Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities. 41 (5), 460-473 (2008).
  17. Mazzocco, M. M. M., Myers, G. F. Complexities in Identifying and Defining Mathematics Learning Disability in the Primary School-Age Years. Annals of dyslexia. (Md). 53, 218-253 (2003).
  18. Barahmand, U. Arithmetic Disabilities: Training in Attention and Memory Enhances Artihmetic Ability. Research Journal of Biological Sciences. 3 (11), 1305-1312 (2008).
  19. Reigosa-Crespo, V., et al. Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology. 48 (1), 123-135 (2012).
  20. Hein, J., Bzufka, M. W., Neumärker, K. J. The specific disorder of arithmetic skills. Prevalence studies in a rural and an urban population sample and their clinico-neuropsychological validation. European Child and Adolescent Psychiatry. 9, (2000).
  21. Geary, D. C., Nicholas, A., Li, Y., Sun, J. Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology. 109 (5), 680-693 (2017).
  22. Cowan, R., Powell, D. The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology. 106 (1), 214-229 (2014).
  23. Rubinsten, O., Henik, A. Developmental Dyscalculia: heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences. 13 (2), 92-99 (2009).
  24. Peake, C., Jiménez, J. E., Rodríguez, C. Data-driven heterogeneity in mathematical learning disabilities based on the triple code model. Research in Developmental Disabilities. 71, (2017).
  25. Chan, W. W. L., Wong, T. T. Y. Subtypes of mathematical difficulties and their stability. Journal of Educational Psychology. 112 (3), 649-666 (2020).
  26. Bartelet, D., Ansari, D., Vaessen, A., Blomert, L. Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities. 35 (3), 657-670 (2014).
  27. Geary, D. C., Hamson, C. O., Hoard, M. K. Numerical and arithmetical cognition: a longitudinal study of process and concept deficits in children with learning disability. Journal of experimental child psychology. 77 (3), 236-263 (2000).
  28. Landerl, K., Bevan, A., Butterworth, B. Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition. 93 (2), 99-125 (2004).
  29. Moura, R., et al. Journal of Experimental Child Transcoding abilities in typical and atypical mathematics achievers : The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology. 116 (3), 707-727 (2013).
  30. De Smedt, B., Gilmore, C. K. Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology. 108 (2), 278-292 (2011).
  31. Andersson, U., Östergren, R. Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences. 22 (6), 701-714 (2012).
  32. Geary, D. C., Hoard, M. K., Nugent, L., Byrd-Craven, J. Development of Number Line Representations in Children With Mathematical Learning Disability. Developmental neuropsychology. , (2008).
  33. van’t Noordende, J. E., van Hoogmoed, A. H., Schot, W. D., Kroesbergen, E. H. Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research. 80 (3), 368-378 (2016).
  34. Chan, B. M., Ho, C. S. The cognitive profile of Chinese children with mathematics difficulties. Journal of Experimental Child Psychology. 107 (3), 260-279 (2010).
  35. Geary, D. C., Hoard, M. K., Bailey, D. H. Fact Retrieval Deficits in Low Achieving Children and Children With Mathematical Learning Disability. Journal of Learning Disabilities. 45 (4), 291-307 (2012).
  36. Clarke, B., Shinn, M., Shinn, M. R. A Preliminary Investigation Into the Identification and Development of Early Mathematics Curriculum-Based Measurement. Psychology Review. 33 (2), 234-248 (2004).
  37. David, C. V. Working memory deficits in Math learning difficulties: A meta-analysis. British Journal of Developmental Disabilities. 58 (2), 67-84 (2012).
  38. Peng, P., Fuchs, D. A Meta-Analysis of Working Memory Deficits in Children With Learning Difficulties: Is There a Difference Between Verbal Domain and Numerical Domain. Journal of Learning Disabilities. 49 (1), 3-20 (2016).
  39. Peng, P., et al. Examining the mutual relations between language and mathematics: A meta-analysis. Psychological Bulletin. 146 (7), 595-634 (2020).
  40. Andersson, U., Lyxell, B. Working memory deficit in children with mathematical difficulties: A general or specific deficit. Journal of Experimental Child Psychology. 96 (3), 197-228 (2007).
  41. Guzmán, B., Rodríguez, C., Sepúlveda, F., Ferreira, R. A. Number Sense Abilities , Working Memory and RAN: A Longitudinal. Revista de Psicodidáctica. 24, 62-70 (2019).
  42. Passolunghi, M. C., Cornoldi, C. Working memory failures in children with arithmetical difficulties. Child Neuropsychology. 14 (5), 387-400 (2008).
  43. vander Sluis, S., vander Leij, A., de Jong, P. F. Working Memory in Dutch Children with Reading- and Arithmetic-Related LD. Journal of Learning Disabilities. 38 (3), 207-221 (2005).
  44. Lefevre, J. A., et al. Pathways to Mathematics: Longitudinal Predictors of Performance. Child Development. 81 (6), 1753-1767 (2010).
  45. Simmons, F. R., Singleton, C. Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia. 14 (2), 77-94 (2008).
  46. Kleemans, T., Segers, E., Verhoeven, L. Role of linguistic skills in fifth-grade mathematics. Journal of Experimental Child Psychology. 167, 404-413 (2018).
  47. Hecht, S. A., Torgesen, J. K., Wagner, R. K., Rashotte, C. A. The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology. 79 (2), 192-227 (2001).
  48. García-Vidal, J., González-Manjón, D., García-Ortiz, B., Jiménez-Fernández, A. . Evamat: batería para la evaluación de la competencia matemática. , (2010).
  49. Gregoire, J., Nöel, M. P., Van Nieuwenhoven, C. . TEDI-MATH. , (2005).
  50. Navarro, J. I., et al. Estimación del aprendizaje matemático mediante la versión española del Test de Evaluación Matemática Temprana de Utrecht. European Journal of Education and Psychology. 2 (2), 131 (2009).
  51. Cerda Etchepare, G., et al. Adaptación de la versión española del Test de Evaluación Matemática Temprana de Utrecht en Chile . Estudios pedagógicos. 38, 235-253 (2012).
  52. Van De Rijt, B. A. M., Van Luit, J. E. H., Pennings, A. H. The construction of the Utrecht early mathematical competence scales. Educational and Psychological Measurement. 59 (2), 289-309 (1999).
  53. Ginsburg, H., Baroody, A. . Test of early math ability. , (2007).
  54. Butterworth, B. . Dyscalculia Screener. , (2003).
  55. Beacham, N., Trott, C. Screening for Dyscalculia within HE. MSOR Connections. 5 (1), 1-4 (2005).
  56. Karagiannakis, G., Noël, M. -. P. Mathematical Profile Test: A Preliminary Evaluation of an Online Assessment for Mathematics Skills of Children in Grades 1-6. Behavioral Sciences. 10 (8), 126 (2020).
  57. Lee, E. K., et al. Development of the Computerized Mathematics Test in Korean Children and Adolescents. Journal of the Korean Academy of Child and Adolescent Psychiatry. 28 (3), 174-182 (2017).
  58. Cangöz, B., Altun, A., Olkun, S., Kaçar, F. Computer based screening dyscalculia: Cognitive and neuropsychological correlates. Turkish Online Journal of Educational Technology. 12 (3), 33-38 (2013).
  59. Zygouris, N. C., et al. Screening for disorders of mathematics via a web application. IEEE Global Engineering Education Conference, EDUCON. , 502-507 (2017).
  60. Jiménez, J. E., Rodríguez, C. . Batería multimedia para la evaluación de habilidades cognitivas y básicas en matemáticas (BM-PROMA). , (2020).
  61. Nuerk, H. -. C., Weger, U., Willmes, K. On the Perceptual Generality of the Unit-DecadeCompatibility Effect. Experimental Psychology (formerly “Zeitschrift für Experimentelle Psychologie”. 51 (1), 72-79 (2004).
  62. Nuerk, H. -. C., Weger, U., Willmes, K. Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition. 82 (1), 25-33 (2001).
  63. Booth, J. L., Siegler, R. S. Developmental and individual differences in pure numerical estimation. Developmental Psychology. 42 (1), 189-201 (2006).
  64. Case, R., Kurland, D. M., Goldberg, J. Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology. 33 (3), 386-404 (1982).
  65. Denckla, M. B., Rudel, R. Rapid “Automatized” Naming of Pictured Objects, Colors, Letters and Numbers by Normal Children. Cortex. 10 (2), 186-202 (1974).
  66. Milner, B. Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin. 27, 272-277 (1971).
  67. Rosseel, Y. lavaan: An R package for structural equation modeling. Journal of Statistical Software. 48 (2), 1-36 (2012).
  68. Knops, A., Nuerk, H. -. C., Göbel, S. M. Domain-general factors influencing numerical and arithmetic processing. Journal of Numerical Cognition. 3 (2), 112-132 (2017).
  69. Torresi, S. Review Interaction between domain-specific and domain-general abilities in math’s competence. Journal of Applied Cognitive Neuroscience. 1 (1), 43-51 (2020).
  70. Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., Pascual-Leone, J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience. 30, 239-250 (2018).
  71. Dehaene, S. Varieties of numerical abilities. Cognition. 44 (1-2), 1-42 (1992).
  72. Streiner, D. L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. Statistical Developments and Applications. 80 (1), 99-103 (2003).
  73. Zainudin, A. Validating the measurement model CFA. A handbook on structural equation modeling. , 54-73 (2014).
  74. Brown, T. A. . Confirmatory factor analysis for applied reaearch. (9), (2015).
  75. Kline, R. B. . Principles and practice of structural equation modeling. , (2011).
  76. Putnick, D. L., Bornstein, M. H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review. 41, 71-90 (2016).
  77. Artiles, C., Jiménez, J. E. Prueba de Cáculo Artimético. Normativización de instrumentos para la detección e identificación de las necesidades educativas del alumnado con trastorno por déficit de atención con o sin hiperactividad (TDAH) o alumnado con dificultades específicas de aprendizaje (DEA). , 13-26 (2011).
  78. Hosmer, D., Lemeshow, S., Rod, X. Sturdivant. Applied Logistic Regression. , (2013).
  79. Smolkowski, K., Cummings, K. D. Evaluation of Diagnostic Systems: The Selection of Students at Risk of Academic Difficulties. Assessment for Effective Intervention. 41 (1), 41-54 (2015).
  80. Piazza, M., et al. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition. 116 (1), 33-41 (2010).
  81. Van Hoof, J., Verschaffel, L., Ghesquière, P., Van Dooren, W. The natural number bias and its role in rational number understanding in children with dyscalculia. Delay or deficit. Research in Developmental Disabilities. 71, 181-190 (2017).
  82. Swanson, H. L., Jerman, O., Zheng, X. Growth in Working Memory and Mathematical Problem Solving in Children at Risk and Not at Risk for Serious Math Difficulties. Journal of Educational Psychology. 100 (2), 343-379 (2008).
  83. Kroesbergen, E., Van Luit, J. E. H., Van De Rijt, B. A. M. Young children at risk for math disabilities: Counting skills and executive functions. Journal of Psychoeducational Assessment. , (2009).

Play Video

Citazione di questo articolo
Rodríguez, C., Jiménez, J. E., de León, S. C., Marco, I. Multimedia Battery for Assessment of Cognitive and Basic Skills in Mathematics (BM-PROMA). J. Vis. Exp. (174), e62288, doi:10.3791/62288 (2021).

View Video