Summary

体外荧光显微镜基于动感检测的肌素特异性适应

Published: February 04, 2021
doi:

Summary

这里介绍的是一个过程来表达和净化肌素5a,然后讨论其特征,使用合奏和单分子体外荧光显微镜为基础的测定,以及如何修改这些方法来描述非肌肉肌素2b。

Abstract

肌素蛋白与丝状活性素(F-actin)结合和相互作用,存在于噬菌体树的生物体中。它们的结构和酶特性适应它们在细胞中执行的特殊功能。肌素 5a 在 F – actin 上游行, 在细胞中运输黑色素体和囊泡。相反,非肌肉肌素2b作为一个双极丝,包含约30个分子。它向灯丝中心移动相反极性的F-actin,肌素分子在重复循环之前异步工作,以结合作用素,传递功率冲程,并分离。非肌肉肌素 2b 及其其他非肌肉肌素 2 等形体具有包括细胞粘附、细胞因子和张力维护等角色。肌素的机械化学可以通过使用纯化蛋白进行体外动能检测来研究。在滑翔行动素灯丝检测中,肌素被绑在显微镜覆盖面,并转移荧光标记的F-actin,可以跟踪。然而,在单分子/合奏运动性测定中,F-actin 必然会与覆盖唇结合,并观察到荧光标记肌素分子在F-actin上的运动。在本报告中,概述了使用亲和色谱法从 Sf9 细胞中重组肌素5a的净化。在此之后,我们概述了两个荧光显微镜为基础的检测:滑翔作用素灯丝检测和倒置运动性检测。通过这些测定,可以使用图像分析软件提取行动素移位速度和单分子运行长度和速度等参数。这些技术也可以应用于研究非肌肉肌素2等形体的单丝运动,在此背景下讨论的非肌肉肌素2b。此工作流表示一个协议和一组定量工具,可用于研究非肌肉肌素的单分子和合奏动力学。

Introduction

肌酸是运动蛋白,利用从腺苷三磷酸盐(ATP)水解1中提取的能量对作用素丝施加力。肌素包含头部、颈部和尾部域。头部域包含作用素结合区域以及 ATP 结合和水解的站点。颈部域由智商图案组成,它们与光链、镇静素或镇静蛋白类蛋白质2、3结合。尾部区域具有几种功能,特定于每类肌素,包括但不限于两个重链的变暗,货物分子的结合,并通过与头部域的自动抑制相互作用调节肌素1。

肌素的多功能性因班级而异。其中一些属性包括值班比率(肌素的机械周期的一部分,肌素必然作用)和过程性(电机在分离前在其轨道上进行多个步骤的能力)4。超过40类肌素是根据序列分析5,6,7,8确定的。第2类肌素被归类为”常规”,因为它们是第一个被研究的:因此,所有其他类型的肌素被归类为”非常规”。

肌素 5a (M5a) 是 5 级肌素,是一种加工电机,这意味着它可以在分离前沿行动素采取多个步骤。它有一个高关税比率,表明它花了很大一部分机械周期必然行动9,10,11,12,13,14。与其他肌酸一样,重链包含一个N-终端电机域,包括一个行动素结合和ATP水解站点,然后是一个颈部区域,作为一个杠杆臂,与六个智商图案,结合到基本的光链(ELC)和镇静剂(CAM)15。尾部区域包含α-螺旋线圈,使分子变暗,然后是用于结合货物的球状尾部区域。其动力学反映了它参与黑色素细胞中的黑色素体的运输和Purkinje神经元16,17的内质视网膜的运输。M5a 被认为是典型的货物运输电机18

类 2 肌素, 或传统的肌素, 包括肌素, 骨骼, 心脏和光滑的肌肉的力量收缩除了非肌肉肌素 2 (NM2) 异形, NM2a, 2b, 和 2c19.NM2同构体存在于所有细胞的细胞质中,在细胞因子、粘附、组织形态和细胞迁移19、20、21、22中具有共同作用。本文讨论了非肌肉肌素2b(NM2b)23背景下的常规肌素协议。NM2b,与M5a相比,具有较低的关税比率,并且酶速度较慢,V最大值为0.2 s-123,而M5a的V最大值为≈18s-124。值得注意的是,用两个头截断的NM2b构造不会轻易在行动上进行处理性移动:相反,每次遇到行动素会导致功率冲程,然后分离分子25。

NM2b 包含两个肌素重链,每个链条都有一个球状头域、一个杠杆臂(带一个 ELC 和一个调节光链 (RLC))和一个α螺旋线圈杆/尾域,大约 1,100 个氨基酸长,使这两个重链变暗。NM2b的酶活性和结构状态受RLC23磷酸化调节。未磷基NM2b,在ATP和生理离子强度(约150mM盐)的存在下,采用紧凑的构象,其中两个头参与不对称的相互作用,尾巴折回头部在两个地方23。在这种状态下,肌素与作用素没有很强的相互作用,并且具有非常低的酶活性。在RLC磷酸化由镇静肌素依赖肌素光链激酶(MLCK)或Rho相关蛋白激酶,分子延伸和与其他肌素通过尾部区域,形成约30肌素分子23的双极丝。上述RLC的磷化也导致NM2b的ACTPase活性增加约四倍26,27,28。这种双极丝排列,每端都有许多肌素电机,在收缩和张力维护中的作用得到优化,其中具有对立极性的作用线可以相互移动23,29。因此,NM2b 已被证明是与行为素交互时作为电机的合奏。这种灯丝中的大量电机使NM2b灯丝在作用丝上进行处理性移动,使体外细丝的处理性成为可能,以29为特征。

虽然在理解肌素在细胞中的作用方面取得了进展,但有必要在蛋白质水平上了解其个体特征。为了理解在简单的蛋白质-蛋白质相互作用水平,而不是细胞内部的活性肌素相互作用,我们可以表达和净化重组肌素用于体外研究。这些研究的结果然后告诉机械生物学家关于特定肌素的生物物理性质,最终驱动复杂的细胞过程12,13,14,25,29。通常,这是通过添加亲和力标签到全长或截断肌素结构和净化通过亲和色谱29,30,31。此外,该结构可以设计为包括基因编码的氟磷或合成荧光蛋白标签。通过添加这样的荧光标签,可以进行单分子成像研究来观察肌素力学和动力学。

经过净化,肌素可以通过几种方式进行特性。ATPase 活性可以通过色度测量方法进行测量,从而深入了解电机在不同条件下的整体能耗和作用亲和力。为了了解其动力的机械化学性,需要进一步的实验。本文详细介绍了两种体外荧光显微镜方法,可用于描述纯化肌素蛋白的体外特性。

其中第一种方法是滑翔作用素丝测定,可用于定量研究肌素电机的合奏特性,以及定性地研究一批纯化蛋白33的质量。虽然本文讨论了使用总内部反射荧光(TIRF)显微镜进行此测定,但这些实验可以有效地使用配备数码相机的广域荧光显微镜进行,这在许多实验室中很常见。在此检测中,肌素电机的饱和层连接到覆盖唇上。这可以使用硝基纤维素,抗体,膜,SiO2衍生表面(如三甲基氯西兰),除其他29,33,35,36,37,38。荧光标记的活性丝通过覆盖唇室,在室室中,作用素与附着在表面的肌素结合。添加 ATP(和 NM2 研究中的激酶)后,对腔室进行成像,以观察表面肌素对作用素丝的转移。跟踪软件可用于关联每个滑翔行动丝的速度和长度。分析软件还可以提供移动和静止作用素丝的数量,这可用于确定给定肌素制备的质量。停滞的细丝的比例也可以故意调节通过表面系绳的Actin到其他蛋白质,并测量,以确定肌素39的负荷依赖性。由于每个作用素灯丝可以由大量的可用电机推动,这种测定是非常可重复的,最终测量的速度是强大的扰动,如改变在开始肌素浓度或在解决方案中存在其他因素。这意味着它可以很容易地修改,以研究肌素活动在不同的条件下,如改变的磷化,温度,离子强度,溶液粘度,以及由表面系绳引起的负载的影响。虽然诸如不能进行ATP水解的强结合肌素”死头”等因素可导致作用素丝停滞,但存在多种方法来缓解此类问题并允许精确测量。肌素的动能特性因班级而异,根据所使用的具体肌素,此测定中的行为素丝滑翔速度可能从低于 20 nm/s(肌素 9)40、41和高达 60,000 nm/s(Characean 肌素 11)42。

第二次检测颠倒了滑翔行动素丝测定12的几何形状。在这里,作用细丝连接到覆盖唇表面,M5a单分子或NM2b单双极丝的运动被可视化。此检测可用于量化单肌素分子或丝在行动素上的运行长度和速度。盖唇涂有一种化合物,可阻断非特定结合,同时使表面功能化,如生物素聚乙烯乙二醇(生物素-PEG)。添加改良的维丁衍生物,然后使表面和生物素化作用素通过腔室,导致一层F-actin稳定地绑在腔室底部。最后,激活和荧光标记肌素(通常为 1-100 nM)流经腔室,然后成像以观察肌素在固定作用素丝上的运动。

这些模式代表快速和可重复的方法,可用于检查非肌肉和肌肉肌素的动态。本报告概述了净化M5a和NM2b的程序,分别代表非常规和常规肌素。随后,将讨论一些肌素特异性适应,这些适应可以执行,以在两种类型的检测中成功捕获运动。

表达和分子生物学
感兴趣的肌素的 cDNA 必须克隆到经过修改的 pFastBac1 矢量上,该载体在表示 M5a-HMM 时编码 C 端端旗标签 (DYKDDDDK),如果表示 NM2b23、43、44、45、46的全长分子,则编码 N-终端标志。NM2b 上的 C 端旗标签导致 FLAG 亲和力列的蛋白质亲和力减弱。相比之下,N-终端标记的蛋白质通常与旗亲和力列23结合得很好。N-终端标记蛋白保留酶活性、机械活性和磷酸依赖调节23。

在本文中,使用了截断的鼠标 M5a 重质肌蛋白 (HMM) 样结构,在 FLAG 标签和肌素重链的 C 终点之间使用了 GFP。请注意,与 NM2b 不同,M5a-HMM 可以使用 N 或 C 端标志成功标记和纯化,在这两种情况下,产生的构造都将是活性。M5a 重链在氨基酸 1090 中被截断,在 GFP 和 M5a47的线圈线圈区域之间含有三个氨基酸链 (GCG)。GFP 和 FLAG 标签之间没有添加其他链接器。M5a – hmm 与平静的杜林共同表达。全长人类NM2b结构与ELC和RLC共同表达。RLC 的 N-术语通过五种氨基酸 (SGLRS) 的链接器与 GFP 融合在一起。直接连接到标志标签的是一个光环塔格。在光环塔格和肌素重链的N终点之间,有一个由两种氨基酸(AS)制成的链接器。

两种肌素制剂均从一升感染巴库洛病毒的 Sf9 细胞培养中纯化,密度约为2×106 细胞/mL。每个子组的 baculo 病毒数量取决于由制造商说明确定的病毒的感染倍数。在M5a病例中,细胞与两种不同的巴库洛病毒共同感染,一种用于镇静剂,另一种用于M5a重链。在NM2b病例中,细胞与三种不同的病毒共同感染,一种用于ELC,一种用于RLC,另一种用于NM2b重链。对于使用多种肌素(或其他多复合蛋白)的实验室,这种方法是有效的,因为它允许重链和轻链的许多组合,常用的轻链,如镇静剂,可以与许多不同的肌素重链共同感染。所有细胞工作都是在生物安全柜中完成的,采用适当的无菌技术,以避免污染。

对于 M5a 和 NM2b 的表达,通过离心机在感染后 2-3 天收集产生重组肌素的 Sf9 细胞,并存储在 -80 °C 下。 细胞颗粒是通过在4°C下离心共感染的Sf9细胞,在2,800 x g下30分钟获得的。蛋白质净化过程详见下文。

Protocol

1. 蛋白质纯化 细胞裂解和蛋白质提取 根据表 1 准备 1.5倍提取缓冲。过滤并存储在 4 °C 下。 开始解冻冰上的细胞颗粒。当颗粒解冻时,用 1.2 mM 二硫醇 (DTT)、5 μg/mL 脂蛋白、0.5 μM 苯甲基磺胺 (PMSF) 和两片蛋白酶抑制剂补充 100 mL 提取缓冲剂。继续冰上 一旦颗粒解冻,每10 mL细胞培养基添加1 mL的补充提取缓冲。例如,如果细胞颗粒由 500 mL 的细胞培?…

Representative Results

肌素的纯化可以通过执行减少硫酸钠-聚丙烯酰胺(SDS-PAGE)凝胶电泳(如图2所示)来评估。虽然这个数字代表最终的,透析后肌素,SDS-PAGE可以在净化程序的不同阶段的alquot上执行,以确定任何产品丢失给超高纳特。肌素 5a HMM 有一个带在 120-130 kDa 范围和全长非肌肉肌素 2b 有一个带在 200-230 kDa 范围, 对应于重链29,44.肌素 5a 也?…

Discussion

这里介绍的是肌素 5a 和非肌肉肌素 2b 的净化和体外特征的工作流程。这组实验有助于以快速可重复的方式量化纯化肌素结构的机械化学特性。虽然这里显示的两种肌素只是许多可能性中的两个具体例子,但条件和技术可以应用到大多数肌素和许多其他运动蛋白中,并采用一些定制技术。

此处讨论的协议会根据实验室和实验的个别需求而有所不同。例如,正如在表达和分子生…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢张方博士为准备用于收集这些数据的试剂提供的技术援助。这项工作得到了NHLBI/NIH校内研究计划基金HL001786对J.R.S的支持。

Materials

1 mL Syringe BD 309628
2 M CaCl2 Solution VWR 10128-558
2 M MgCl2 Solution VWR 10128-298
27 Gauge Needle Becton Dickinson 309623
5 M NaCl Solution KD Medical RGE-3270
Acetic Acid ThermoFisher Scientific 984303
Amyl Acetate Ladd Research Industries 10825
Anti-FLAG M2 Affinity Gel Millipore Sigma A2220 https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/a2220bul.pdf
ATP Millipore Sigma A7699
Biotinylated G-Actin Cytoskeleton, Inc. AB07
Bovine Serum Albumin Millipore Sigma 5470
bPEG-silane Laysan Bio, Inc Biotin-PEG-SIL-3400-1g
Bradford Reagent Concentrate Bio-Rad 5000006
Calmodulin PMID: 2985564
Catalase Millipore Sigma C40
Cell Line (Sf9) in SF-900 II SFM ThermoFisher Scientific 11496015 http://tools.thermofisher.com/content/sfs/manuals/bevtest.pdf https://tools.thermofisher.com/content/sfs/manuals/bactobac_man.pdf
Circular Filter Paper – Gliding Assay Millipore Sigma WHA1001125
Circular Filter Paper – Inverted Assay Millipore Sigma WHA1001090
cOmplete, EDTA-Free Protease Inhibitor Tablets Millipore Sigma 5056489001 This should be stored at 4 °C. The tablets can be used directly or can be reconstituted as a 25x stock solution by dissolving 1 tablet in 2 mL of distilled water. The resulting solution can be stored at 4 °C for 1-2 weeks or at least 12 weeks at -20 °C. 
Concentrating Tubes (100,000 MWCO) EMD Millipore Corporation UFC910024 The MWCO of the tube is not necessarily "one size fits all," as long as the MWCO is less than the total molecular weight of the protein being purified. The NM2b herein was concentrated with a 100,000 MWCO tube and the M5a was concentrated with a 30,000 MWCO tube.
Coomassie Brilliant Blue R-250 Dye ThermoFisher Scientific 20278
Coverslip Rack Millipore Sigma Z688568-1EA
Coverslips: Gliding Acting Filament Assay VWR International 48366-227
Coverslips: Inverted Motility Assay Azer Scientific ES0107052
Dialysis Tubing (3500 Dalton MCWO) Fischer Scientific 08-670-5A The diameter of the dialysis tube can vary, but the MWCO should be the same. The NM2b used herein was dialyzed in an 18 mm dialysis tube. The tubes can be stored in 20% alcohol solution at 4 °C.
DL-Dithiothreitol Millipore Sigma D0632
Double-Sided Tape Office Depot 909955
DYKDDDDK Peptide GenScript RP10586 This can be dissolved in a buffer containing 0.1 M NaCl, 0.1 mM EGTA, 3 mM NaN3, and 10 mM MOPS (pH 7.2) to a final concentration of 50 mg/mL. This can be stored at -20 °C as 300 µL aliquots. 
EGTA Millipore Sigma E4378
Elution Column Bio-Rad 761-1550 These can be reused. To clean, rinse the column with 2-3 column volumes of PBS and distilled water. Chill the column at 4° C before use.
Ethanol Fischer Scientific A4094
G-actin PMID: 4254541 G-actin stock can be stored at 200 μM in liquid N2.
Glucose Millipore Sigma G8270
Glucose Oxidase Millipore Sigma G2133
Glycine Buffer Solution, 100 mM, pH 2-2.5, 1 L Santa Cruz Biotechnology sc-295018
HaloTag Promega G100A
HCl Millipore Sigma 320331
KCl Fischer Scientific P217-500
Large-Orifice Pipet Tips Fischer Scientific 02-707-134
Leupeptin Protease Inhibitor ThermoFisher Scientific 78435
Mark12 Unstained Standard Ladder ThermoFisher Scientific LC5677
Methanol Millipore Sigma MX0482
Methylcellulose Millipore Sigma M0512
Microscope Slides Fischer Scientific 12-553-10
MOPS Fischer Scientific BP308-100
mPEG-silane Laysan Bio, Inc MPEG-SIL-2000-1g
Myosin Light Chain Kinase PMID: 23148220 FLAG-tagged MLCK can be purified the same way that the FLAG-tagged myosin was purified herein. 
NaN3 Millipore Sigma S8032
NeutrAvidin ThermoFisher Scientific 31050
Nitrocellulose Ladd Research Industries 10800
NuPAGE 4 to 12% Bis-Tris Mini Protein Gel, 15-well ThermoFisher Scientific NP0323PK2
NuPAGE LDS Sample Buffer (4X) ThermoFisher Scientific NP0007
Phosphate-Buffered Saline, pH 7.4 ThermoFisher Scientific 10010023
PMSF Millipore Sigma 78830 PMSF can be made as a 0.1 M stock solution in isopropanol and stored in 4 °C. Isopropanol addition results in crystal precipitation, which can be dissolved by stirring at room temperature. Immediately before use, PMSF can be added dropwise to a rapidly stirring solution to a final concentration of 0.1 mM. 
Razor Blades Office Depot 397492
Rhodamine-Phalloidin ThermoFisher Scientific R415 Stock can be diluted in 100% methanol to a final concentration of 200 μM.
Sf9 Media ThermoFisher Scientific 12658-027 This should be stored at 4° C. Its shelf life is 18 months from the date of manufacture.
Tissue Culture Dish – Gliding Assay Corning 353025 Each tissue culture dish can hold approximately nine coverslips.
Tissue Culture Dish – Inverted Assay Corning 353003 Each tissue culture dish can hold approximately four coverslips.
Smooth-sided 200 µL Pipette Tips Thomas Scientific 1158U38
EQUIPMENT
Centrifuge ThermoFisher Scientific 75006590
Microscope Nikon Model: Eclipse Ti with H-TIRF system with 100x TIRF Objective (N.A. 1.49)
Microscope Camera Andor Model: iXon DU888 EMCCD camera (1024 x 1024 sensor format)
Microscope Environmental Control Box Tokai HIT Custom Thermobox
Microscope Laser Unit Nikon LU-n4 four laser unit with solid state lasers for 405nm, 488nm, 561nm,and 640nm
Mid Bench Centrifuge ThermoFisher Scientific Model: CR3i
Misonix Sonicator Misonix XL2020
Optima Max-Xp Tabletop Ultracentrifuge Beckman Coulter 393315
Plasma-Cleaner Diener electronic GmbH + Co. KG System Type: Zepto
Sonicator Probe (3.2 mm) Qsonica 4418
Standard Incubator Binder Model: 56
Waverly Tube Mixer Waverly TR6E
SOFTWARE
ImageJ FIJI https://imagej.net/Fiji/Downloads
FAST (Version 1.01) http://spudlab.stanford.edu/fast-for-automatic-motility-measurements FAST is available for Mac OSX and Linux based systems.
Image Stabilizer Plugin https://imagej.net/Image_Stabilizer
ImageJ TrackMate https://imagej.net/TrackMate
Imaging Software NIS Elements (AR package)
http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html
File:TrackMate-manual.pdf
https://github.com/turalaksel/FASTrack
https://github.com/turalaksel/FASTrack/blob/master/README.md

Riferimenti

  1. Sellers, J. R. Myosins: A diverse superfamily. Biochimica et Biophysica Acta – Molecular Cell Research. 1496 (1), 3-22 (2000).
  2. Cheney, R. E., Mooseker, M. S. Unconventional myosins. Current opinion in cell biology. 4 (1), 27-35 (1992).
  3. Rhoads, A. R., Friedberg, F. Sequence motifs for calmodulin recognition. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 11 (5), 331-340 (1997).
  4. Vilfan, A. Ensemble velocity of non-processive molecular motors with multiple chemical states. Interface Focus. 4 (6), 20140032 (2014).
  5. Richards, T. A., Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 436 (7054), 1113-1118 (2005).
  6. Odronitz, F., Kollmar, M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biology. 8 (9), 1-23 (2007).
  7. Kollmar, M., Mühlhausen, S. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era. BMC Evolutionary Biology. 17 (1), 1-18 (2017).
  8. Berg, J. S., Powell, B. C., Cheney, R. E. A millennial myosin census. Molecular Biology of the Cell. 12 (4), 780-794 (2001).
  9. De La Cruz, E. M., Sweeney, H. L., Ostap, E. M. ADP inhibition of myosin V ATPase activity. Biophysical Journal. 79 (3), 1524-1529 (2000).
  10. Mehta, A. D., et al. Myosin-V is a processive actin-based motor. Nature. 400 (6744), 590-593 (1999).
  11. Yildiz, A., et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science. 300 (5628), 2061-2065 (2003).
  12. Sakamoto, T., Amitani, I., Yokota, E., Ando, T. Direct Observation of Processive Movement by Individual Myosin V Molecules. Biochemical and Biophysical Research Communications. 272 (2), 586-590 (2000).
  13. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biology. 4 (1), 59-65 (2002).
  14. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D., Sellers, J. R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature. 455 (7209), 128-132 (2008).
  15. Cheney, R. E., et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell. 75 (1), 13-23 (1993).
  16. Wu, X., Bowers, B., Wei, Q., Kocher, B., Hammer, J. A. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. Journal of Cell Science. 110 (7), 847-859 (1997).
  17. Wagner, W., Brenowitz, S. D., Hammer, J. A. Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nature Cell Biology. 13 (1), 40-48 (2011).
  18. Hammer, J. A., Sellers, J. R. Walking to work: roles for class V myosins as cargo transporters. Nature reviews. Molecular cell biology. 13 (1), 13-26 (2011).
  19. Vicente-Manzanares, M., Ma, X., Adelstein, R. S., Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Reviews Molecular Cell Biology. 10 (11), 778-790 (2009).
  20. Beach, J. R., Hammer, J. A. Myosin II isoform co-assembly and differential regulation in mammalian systems. Experimental Cell Research. 334 (1), 2-9 (2015).
  21. Ebrahim, S., et al. NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Current Biology. 23 (8), 731-736 (2013).
  22. Ma, X., Bao, J., Adelstein, R. S. Loss of Cell Adhesion Causes Hydrocephalus in Nonmuscle Myosin II-B-ablated and Mutated Mice. Molecular Biology of the Cell. 18 (6), 2305-2312 (2007).
  23. Billington, N., Wang, A., Mao, J., Adelstein, R. S., Sellers, J. R. Characterization of three full-length human nonmuscle myosin II paralogs. Journal of Biological Chemistry. 288 (46), 33398-33410 (2013).
  24. Li, X., Mabuchi, K., Ikebe, R., Ikebe, M. Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochemical and Biophysical Research Communications. 315 (3), 538-545 (2004).
  25. Nagy, A., et al. Kinetic characterization of nonmuscle myosin IIB at the single molecule level. Journal of Biological Chemistry. 288 (1), 709-722 (2013).
  26. Sandquist, J. C., Swenson, K. I., DeMali, K. A., Burridge, K., Means, A. R. Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. Journal of Biological Chemistry. 281 (47), 35873-35883 (2006).
  27. Scholey, J. M., Taylor, K. A., Kendrick-Jones, J. Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature. 287 (5779), 233-235 (1980).
  28. Adelstein, R. S., Anne Conti, M. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 256 (5518), 597-598 (1975).
  29. Melli, L., et al. Bipolar filaments of human nonmuscle myosin 2-A and 2-B have distinct motile and mechanical properties. eLife. 7, 1-25 (2018).
  30. Fujita, K., Ohmachi, M., Ikezaki, K., Yanagida, T., Iwaki, M. Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Communications Biology. 2 (1), (2019).
  31. Zhao, X., Li, G., Liang, S. Several affinity tags commonly used in chromatographic purification. Journal of Analytical Methods in Chemistry. 2013, (2013).
  32. De La Cruz, E. M., Michael Ostap, E. Kinetic and equilibrium analysis of the myosin ATPase. Methods in Enzymology. 455 (08), 157-192 (2008).
  33. Kron, S. J., Spudich, J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America. 83 (17), 6272-6276 (1986).
  34. Homsher, E., Wang, F., Sellers, J. R. Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. American Journal of Physiology-Cell Physiology. 262 (3), 714-723 (1992).
  35. Bunk, R., et al. Actomyosin motility on nanostructured surfaces. Biochemical and Biophysical Research Communications. 301 (3), 783-788 (2003).
  36. Ito, K., et al. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochemical and Biophysical Research Communications. 312 (4), 958-964 (2003).
  37. Pyrpassopoulos, S., Feeser, E. A., Mazerik, J. N., Tyska, M. J., Ostap, E. M. Membrane-bound Myo1c powers asymmetric motility of actin filaments. Current Biology. 22 (18), 1688-1692 (2012).
  38. Lindberg, F. W., et al. Controlled surface silanization for actin-myosin based nanodevices and biocompatibility of new polymer resists. Langmuir. 34 (30), 8777-8784 (2018).
  39. Greenberg, M. J., Moore, J. R. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton. 67 (5), 273-285 (2010).
  40. Liao, W., Elfrink, K., Bähler, M. Head of myosin IX binds calmodulin and moves processively toward the plus-end of actin filaments. Journal of Biological Chemistry. 285 (32), 24933-24942 (2010).
  41. O’Connell, C. B., Mooseker, M. S. Native Myosin-IXb is a plus-, not a minus-end-directed motor. Nature Cell Biology. 5 (2), 171-172 (2003).
  42. Higashi-Fujime, S., et al. The fastest-actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Letters. 375 (1-2), 151-154 (1995).
  43. Kengyel, A., Wolf, W. A., Chisholm, R. L., Sellers, J. R. Nonmuscle myosin IIA with a GFP fused to the N-terminus of the regulatory light chain is regulated normally. Journal of Muscle Research and Cell Motility. 31 (3), 163-170 (2010).
  44. Wang, F., et al. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. Journal of Biological Chemistry. 275 (6), 4329-4335 (2000).
  45. Sakamoto, T., Yildiz, A., Selvin, P. R., Sellers, J. R. Step-size is determined by neck length in myosin V †. Biochimica. 44 (49), 16203-16210 (2005).
  46. Moore, J. R., Krementsova, E. B., Trybus, K. M., Warshaw, D. M. Myosin V exhibits a high duty cycle and large unitary displacement. Journal of Cell Biology. 155 (4), 625-636 (2001).
  47. Bryant, Z., Altman, D., Spudich, J. A. The power stroke of myosin VI and the basis of reverse directionality. Proceedings of the National Academy of Sciences of the United States of America. 104 (3), 772-777 (2007).
  48. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72 (1-2), 248-254 (1976).
  49. Chandradoss, S. D., et al. Surface passivation for single-molecule protein studies. Journal of Visualized Experiments: JoVE. (86), e50549 (2014).
  50. Aksel, T., Choe Yu, E., Sutton, S., Ruppel, K. M., Spudich, J. A. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Reports. 11 (6), 910-920 (2015).
  51. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  52. Swoboda, M., et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano. 6 (7), 6364-6369 (2012).
  53. Weissmann, F., et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proceedings of the National Academy of Sciences of the United States of America. 113 (19), 2564-2569 (2016).
  54. Bird, J. E., et al. Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking. Proceedings of the National Academy of Sciences of the United States of America. 111 (34), 12390-12395 (2014).
  55. Bookwalter, C. S., Kelsen, A., Leung, J. M., Ward, G. E., Trybus, K. M. A toxoplasma gondii class XIV myosin, expressed in Sf 9 cells with a parasite co-chaperone, requires two light chains for fast motility. Journal of Biological Chemistry. 289 (44), 30832-30841 (2014).
  56. Rahman, M. A., Salhotra, A., Månsson, A. Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay. Journal of Muscle Research and Cell Motility. 39 (5-6), 175-187 (2018).
  57. Aguilar, H. N., Tracey, C. N., Tsang, S. C. F., McGinnis, J. M., Mitchell, B. F. Phos-tag-based analysis of myosin regulatory light chain phosphorylation in human uterine myocytes. PLoS One. 6 (6), 20903 (2011).
  58. Kinoshita, E., et al. Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. PROTEOMICS. 8 (15), 2994-3003 (2008).
  59. Yang, Y., et al. A FERM domain autoregulates Drosophila myosin 7a activity. Proceedings of the National Academy of Sciences. 106 (11), 4189-4194 (2009).
  60. Kalwarczyk, T., et al. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. Nano Letters. 11 (5), 2157-2163 (2011).
  61. Brizendine, R. K., et al. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges. Proceedings of the National Academy of Sciences of the United States of America. 112 (36), 11235-11240 (2015).
  62. Umemoto, S., Sellers, J. R. Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins. The Journal of Biological Chemistry. 265 (25), 14864-14869 (1990).
  63. Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., Mooseker, M. S. The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. Journal of Cell Biology. 153 (5), 1121-1126 (2001).
  64. Hachikubo, Y., Ito, K., Schiefelbein, J., Manstein, D. J., Yamamoto, K. Enzymatic Activity and Motility of Recombinant Arabidopsis Myosin XI, MYA1. Plant and Cell Physiology. 48 (6), 886-891 (2007).
  65. Bing, W., Knott, A., Marston, S. B. A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: Evidence that tropomyosin and troponin increase force in single thin filaments. Biochemical Journal. 350 (3), 693-699 (2000).
  66. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T., White, D. C. S. Movement and force produced by a single myosin head. Nature. 378 (6553), 209-212 (1995).
  67. Finer, J. T., Simmons, R. M., Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 368 (6467), 113-119 (1994).
  68. Bao, J., Huck, D., Gunther, L. K., Sellers, J. R., Sakamoto, T. Actin structure-dependent stepping of Myosin 5a and 10 during processive movement. PLoS One. 8 (9), 74936 (2013).
  69. Ricca, B. L., Rock, R. S. The stepping pattern of Myosin X is adapted for processive motility on bundled actin. Biophysical Journal. 99 (6), 1818-1826 (2010).
  70. Barua, B., Nagy, A., Sellers, J. R., Hitchcock-DeGregori, S. E. Regulation of nonmuscle myosin II by tropomyosin. Biochimica. 53 (24), 4015-4024 (2014).
  71. Hodges, A. R., et al. Tropomyosin is essential for processive movement of a class V myosin from budding yeast. Current biology: CB. 22 (15), 1410-1416 (2012).
  72. Hundt, N., Steffen, W., Pathan-Chhatbar, S., Taft, M. H., Manstein, D. J. Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Scientific Reports. 6 (1), 20554 (2016).
  73. Los, G. V., et al. HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology. 3 (6), 373-382 (2008).
  74. Nelson, S. R., Ali, M. Y., Warshaw, D. M. Quantum dot labeling strategies to characterize single-molecular motors. Methods in Molecular Biology. 778, 111-121 (2011).
  75. Forkey, J. N., Quinlan, M. E., Alexander Shaw, M., Corrie, J. E. T., Goldman, Y. E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature. 422 (6930), 399-404 (2003).
  76. Gardini, L., Arbore, C., Capitanio, M., Pavone, F. S. A protocol for single molecule imaging and tracking of processive myosin motors. MethodsX. 6, 1854-1862 (2019).
  77. Haldeman, B. D., Brizendine, R. K., Facemyer, K. C., Baker, J. E., Cremo, C. R. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro. The Journal of Biological Chemistry. 289 (30), 21055-21070 (2014).
  78. Ruhnow, F., Kloβ, L., Diez, S. Challenges in estimating the motility parameters of single processive motor proteins. Biophysical Journal. 113 (11), 2433-2443 (2017).
  79. Zheng, Q., Blanchard, S. C. Single fluorophore blinking. Encyclopedia of Biophysics. , 2322-2323 (2013).

Play Video

Citazione di questo articolo
Tripathi, A., Bond, C., Sellers, J. R., Billington, N., Takagi, Y. Myosin-Specific Adaptations of In vitro Fluorescence Microscopy-Based Motility Assays. J. Vis. Exp. (168), e62180, doi:10.3791/62180 (2021).

View Video