Updegraff法はセルロース推定に最も広く用いられている方法です。本デモの主な目的は、植物バイオマスサンプル中のセルロース含有量を推定するための詳細なUpdegraffプロトコルを提供することです。
セルロースは、光合成によって生成される地球上で最も豊富なポリマーであり、細胞壁の主な耐荷重成分です。細胞壁は、強さ、剛性、細胞増殖の速度と方向、細胞形状維持、および生物および無生物性ストレッサーからの保護を提供することにより、植物の成長と開発に重要な役割を果たしています。細胞壁は主にセルロース、リグニン、ヘミセルロースおよびペクチンで構成される。近年、植物細胞壁は第二世代バイオ燃料とバイオエネルギー生産を目標としている。具体的には、植物細胞壁のセルロース成分がセルロース系エタノールの製造に用いられる。バイオマスのセルロース含量の推定は、基本的な応用細胞壁の研究に不可欠です。Updegraff法は、植物バイオマスの結晶セルロース含有量の推定に、シンプルで堅牢で最も広く使用されている方法です。Updegraff試薬による処理時のアルコール不溶性粗細胞壁分率は、ヘミセルロースおよびリグニン画分を排除する。その後、Updegraff試薬耐性セルロース画分を硫酸処理を施し、セルロースホモポリマーを単量グルコース単位に加水分解する。回帰直線は、ブドウ糖の様々な濃度を使用して開発され、実験サンプル中のセルロース加水分解時に放出されるグルコースの量を推定するために使用されます。最後に、セルロース含有量は、色分け制即位アッセイによるグルコースモノマーの量に基づいて推定される。
セルロースは、セルウォールの一次耐荷重成分で、一次セル壁と第二次セル壁の両方に存在します。細胞壁は植物細胞を取り囲む細胞外マトリックスであり、主にセルロース、リグニン、ヘミセルロース、ペクチン、マトリックスタンパク質で構成されています。植物バイオマスの約3分の1はセルロース1であり、強さ、剛性、細胞増殖の速度と方向、細胞形状維持、生物および無生物的ストレッサーからの保護を提供することにより、植物の成長と開発において重要な役割を果たしています。綿繊維は95%セルロース2含み、一方、樹木は植物種および臓器タイプ3に応じてセルロースの40%〜50%を含む。セルロースは、セロビオースの反復単位から構成され、β-1,4グリコシド結合により接続されたグルコース残基の二糖体4。セルロース系エタノールは、植物細胞壁5に存在するセルロースに由来するグルコースから製造される。セルロース繊維は、各マイクロフィブリルが500-15000グルコースモノマー1,6を有するコアユニットとして作用するいくつかのマイクロフィブリルから構成される。セルロースホモポリマーは、セルロース合成錯体(CSC)1,7の細胞膜埋め込みセルロース合成錯体によって合成される。個々のセルロース合成酵素A(CESA)タンパク質は、グルカン鎖と隣接するグルカン鎖を合成し、水素結合により結合して結晶セルロース1,8を形成する。セルロースは、2つの主要な形態を有する数種類の結晶形で存在する、セルロースIα及びセルロースIβを天然型9として挙げる。高等植物では、セルロースIβ型にセルロースが存在し、一方、低い植物のセルロースはIα形態10,11に存在する。全体的に、セルロースは、植物細胞壁に強度と剛性を付与する上で重要な役割を果たしています。
第一世代のバイオ燃料は、主に食料源であるトウモロコシデンプン、サトウキビ糖、ビート糖から製造され、第二世代のバイオ燃料は非食品植物バイオマス電池壁材料12からのバイオ燃料生産に焦点を当てている。結晶セルロース含有量の正確な推定は、セルロース生合成や細胞壁ダイナミクスの基礎研究だけでなく、応用バイオ燃料やバイオ製品の研究にも重要です。植物バイオマスにおけるセルロースの推定に向けて様々な方法が開発され、最適化されており、セルロース推定法として最も広く使用されているUpdegraff法です。セルロース推定の最初の報告された方法は、1908年13年にクロスとベバンによってであった。この方法は、硫酸ナトリウムによる代替塩素化および抽出の原理に基づいていた。しかしながら、CrossおよびBevan法の原本および改変プロトコルによって得られたセルロースは、かなりの量のキシランおよびマンナン14に加えて、リグニンの小さい分画の汚染を示した。セルロース分画からリグニンとヘミセルロースを除去するためにいくつかの変更にもかかわらず、クロスベバン法はセルロースと一緒にマンナンのかなりの量を保持しました。後に、クルシュナーの方法は、セルロース15を抽出するために硝酸とエタノールを採用することによって開発された。この方法では、総リグニンとペントサンの75%が除去されたが、真のセルロースの結果は、クロスとベバンの塩素化方法によって推定されたものと同じであると述べた。別の方法(ノーマンとジェンキンス)は、メタノールベンゼン、硫酸ナトリウム、および次亜塩素酸ナトリウムを使用してセルロース16を抽出することによって開発された。この方法はまた、リグニンの一部を保持しました (3%)セルロースの正確な推定につながるペントサンのかなりの量。その後、KieselとSemiganowskyは、80%の濃硫酸を用いてセルロースを加水分解する別のアプローチを用い、加水分解還元糖をベルトランの方法17によって推定した。2つの方法は、キーゼルとセミガノフスキーの方法に基づいて開発されたワクスマンとスティーブンス18とサロ14、19、また、以前の方法20と比較して4〜5%少ないセルロース含有量を生み出した。
Updegraff法は、結晶セルロース含有量の推定に最も広く使用されている方法です。この方法は、1969年21年にセルロースの測定のためにUpdegraffによって最初に説明された。Updegraff法は、クルシュナー法(硝酸の使用)、キーゼル法およびセミノフスキー法(硫酸を用いたグルコースモノマーへのセルロースの加水分解)をいくつかの改変と統合し、グルコースおよび結晶セルロース含有量の単純な着色推定のためのVilesとシルバーマンの即位アッセイを統合する。この方法の原理は、酢酸および硝酸(Updegraff試薬)を使用して、ヘミセルロースおよびリグニンを均質化した植物組織から排除し、さらに処理および推定のために酢酸/硝酸耐性セルロースを残す。酢酸/硝酸耐性セルロースは、セルロースをグルコースモノマーに分解するために67%の硫酸で処理され、放出されたグルコースモノマーは、即位アッセイ21、23によって推定される。元のUpdegraff法のいくつかの変更は、即位アッセイ24による手順およびセルロース推定を簡素化するために使用された。大まかに言えば、この方法は5つのフェーズに分けることができる。第1段階では、植物材料が調製される。第2段階では、セルロースが植物細胞壁の重要な構成要素であるため、粗細胞壁はバイオマス全体から分離される。後に、第3段階において、セルロースはUpdegraff試薬で処理することにより非セルロース細胞壁成分から分離される。第4段階では、酢酸/硝酸耐性セルロースは硫酸処理によりグルコース単量体に分解される。セルロースの硫酸処理は、グルコースモノマーと硫酸の反応から5-ヒドロキシメチルフルフラール化合物の生成をもたらす。最後に、最後の段階では、即位は、前のフェーズ25で生成されたフルフラール化合物で沸騰することによって緑がかった青い複合体を生成する。この即位の色測定法は、1942年にドレイウッドによって初めて使用されました。アントロンは、5-ヒドロキシメチルフルフラールなどの脱水物、酸性条件下でペントースおよびヘキソーゼのフルフラール化合物を識別する色素です。ヘキソスとの反応は、ペントース25と比較して強烈な色と良い応答を生成します。結合グルコースの量は、620nmの分光光度計の吸光度で測定され、緑がかった青色錯体の強度は、試料中の糖の量に直接比例する。測定された吸光度値をグルコース標準曲線回帰線と比較し、試料のグルコース濃度を算出した。測定したグルコース含有量を使用して、植物バイオマスのセルロース含有量を推定した。
綿繊維は綿実から生み出される天然繊維です。綿繊維は、繊維工業31における広範な用途を有する高結晶セルロース含有量を有するセルロース含有量2〜95%のセルロースを有する単一細胞である。綿繊維は、約95%のセルロースを含み、結晶セルロース含有量の推定の実証に綿根組織を用いた。綿根組織は、結晶セルロース含有量が適度に豊富であり、一般的?…
The authors have nothing to disclose.
私たちは、この研究の部分的なサポートのために植物土壌科学とコットン社の部門に感謝します。
Acetone | Fisher Chemical | A18-500 | Used in the protocol |
Anthrone | Sigma Aldrich | 90-44-8 | For colorimetric assay |
Centrifuge | Eppendorf | 5424 | For centrifugation |
Chloroform | Mallinckrodt | 67-66-3 | Used in the protocol |
Ethylenediaminetetraacetic acid (EDTA) | Sigma Aldrich | 6381-92-6 | Used in the protocol |
Ethanol | Millipore Sigma | EM-EX0276-4S | Used in the protocol |
Filter paper | Whatman | 1004-090 | Positive control |
Glacial acetic acid | Sigma | SKU A6283 | Used in the protocol |
Heat block/ ThermoMixer F1.5 | Eppendorf | 13527550 | For controlled temperatures |
Incubator | Fisherbrand | 150152633 | Used for drying plant sample |
Measuring Scale | Mettler Toledo | 30243386 | For specific quantities |
Methanol 100 % | Fisher Chemical | A412-500 | Used in the protocol |
Microplate (96 well) | Evergreen Scientific | 222-8030-01F | For anthrone assay |
Nitric acid | Sigma Aldrich | 695041 | Used in the protocol |
Polypropylene Microvials (2 mL) / screw capped tubes | BioSpec Products | 10831 | For high temperatures |
Spectrophotometer(Multimode Detector) | Beckmancoulter DTX880 | 1000814 | For measuring absorbances |
Spex SamplePrep 6870 Freezer / Mill | Spex Sample Prep | 68-701-15 | For grinding plant tissues into fine powder |
Sulphuric acid | J.T.Baker | 02-004-382 | Used in the protocol |
Sodium dodecyl sulfate (SDS) | Sigma Aldrich | 151-21-3 | Used in the PSB buffer |
Tubes (2 mL) | Fisher Scientific | 05-408-138 | Used in the protocol |
Tris Hydrochloride | Sigma Aldrich | 1185-53-1 | Used in the PSB buffer |
Ultrapure distilled water | Invitrogen | 10977 | Used in the protocol |
Vacuum dryer (vacufuge plus) | Eppendorf | 22820001 | For drying samples |
Vortex mixer | Fisherbrand | 14-955-151 | For mixing |
Waterbath | Thermoscientific | TSGP02PM05 | For temperature controlled conditions at specific steps |
Weighing Paper | Fisher Scientific | 09-898-12A | Used in the protocol |