Segmentasyon ve doğrusal ölçümler, Bilgisayarlı Tomografi ve/veya Manyetik Rezonans Görüntüleme görüntülerini kullanarak iskelet kas kütlesini ve yağ dokularını ölçer. Burada, vücut kompozisyonunun hızlı ve doğru analizi için Slice-O-Matic yazılımının ve Horos görüntü görüntüleyicinin kullanımını özetliriz. Bu yöntemler prognoz ve risk tabakalaşması için önemli bilgiler sağlayabilir.
Vücut kompozisyonu, çeşitli durumlarda hastalığın ilerlemesi ve tedavi komplikasyonları riski ile ilişkilidir. Bu nedenle bilgisayarlı Tomografi (BT) ve/veya Manyetik Rezonans Görüntüleme (MRG) üzerinde iskelet kası kitlesi ve yağ dokularının nicelleştirilmesi cerrahi risk değerlendirmesini ve hastalık prognozlarını bilgilendirebilir. Bu makalede, başlangıçta Mourtzakis ve ark. ve Avrutin ve arkadaşları tarafından tanımlanan iki nicelleştirme yöntemi açıklanmaktadır: doku segmentasyonu ve iskelet kasının doğrusal ölçümü. Her iki ölçümde de hastaların üçüncü bel omurunun orta noktasında kesitsel görüntüsü elde edildi. Segmentasyon için, görüntüler Slice-O-Matic’e ithal edildi ve iskelet kası, kas içi yağ dokusu, viseral yağ dokusu ve deri altı yağ dokusu için renklendi. Daha sonra etiket yüzey alanı fonksiyonu kullanılarak her doku tipinin yüzey alanları hesaplandı. Doğrusal ölçümler için, bilateral psoas ve paraspinal kasların üçüncü bel omur seviyesindeki yüksekliği ve genişliği ölçülür ve bu dört değer kullanılarak yapılan hesaplama tahmini iskelet kas kütlesini verir. Segmentasyon analizi, hastaların vücut kompozisyonu hakkında nicel, kapsamlı bilgiler sağlar ve daha sonra hastalığın ilerlemesi ile ilişkilendirilebilir. Ancak, süreç daha zaman alıcıdır ve özel eğitim gerektirir. Doğrusal ölçümler, hızlı ameliyat öncesi değerlendirme için verimli ve klinik dostu bir araçtır. Bununla birlikte, doğrusal ölçümler yağ dokusu bileşimi hakkında bilgi sağlamaz. Bununla birlikte, bu yöntemler cerrahi sonuçları, hastalığın ilerleme riskini tahmin etmek ve hastalar için tedavi seçeneklerini bilgilendirmek için çeşitli hastalıklarda geniş uygulamalara sahiptir.
Sarkopeni ve vücut kompozisyonunun değerlendirilmesi şu anda klinik olarak büyük ilgi çekse de; Sarkopeni’nin spesifik tanımları ayara ve bağlama bağlı olarak değişmekle birlikte, tüm tanımlar, yakından ilişkili olan iskelet kas kütlesi veya kas gücü kaybıiçerir 1,2,3. Vücut kompozisyon analizi, iskelet kası kütlesi ve yağ dokusu dağılımı ölçümlerini içerir ve hastaların genel zindeliği hakkında daha kapsamlı bilgi sağlar1,3,4. Benzer şekilde, orantısız olarak dağılmış yağ dokusu, özellikle viseral yağ dokusu, kardiyak hastalık, tip II diyabet ve kanser5dahil olmak üzere çeşitli hastalıklarla ilişkili olduğu bulunmuştur.
Klinik olarak sarkopeni ve doğrusal ölçümlerle değerlendirilmesinin cerrahi, radyoterapi ve kemoterapi 1 ,2,4,6,7,8sonrasında maligniteler ve onkolojik sonuçlarda kansere özgü sağkalım için güçlü bir prognostik faktör olduğu defalarca gösterilmiştir. Özellikle, önceki araştırmalar sarkopeni hastalarının kansere özgü sağkalım ve genel sağkalım 1 , 2,9,10azaldığını göstermektedir. Bu nedenle, sarkopeni ilerlemesinin doğru ve hızlı klinik değerlendirmesi tedavi seçiminin belirlenmesinde önemlidir. Geleneksel tüm vücut kompozisyon profilleme, zaman alıcı, maliyetli ve kapsamlı eğitim gerektiren Bilgisayarlı Tomografi (BT), Manyetik Rezonans Görüntüleme (MRG), Kemik Yoğunluk (DEXA) ve Biyoelektrik Empedans Analizi (BIA) dahil olmak üzere görüntüleme teknikleri kullanılarak üç boyutlu (3D) düzeyde analiz gerektirir5,11. Bir diğer dezavantajı, özellikle hava deplasmanı pletirmografisi (ADP) ve DEXA12için yağ dağılımı hakkında bilgi eksikliğidir. Bu nedenle, standart bakım klinik uygulamalarının bir parçası olarak kullanılan BT veya MR gibi geleneksel kesitsel görüntüleme yöntemlerinin kullanımı ile sarkopeni ve vücut kompozisyonunun değerlendirilmesi ve belirlenmesi büyük klinik değere sahiptir5.
Klinik araştırma ortamında yaygın olarak kullanılan segmentasyon yazılımlarından biri de TomoVision tarafından geliştirilen Slice-O-Matic programıdır. Mourtzakis ve ark.13 segmentasyon prosedürünü kullanarak, araştırmacılara veya klinisyenlere iskelet kası (SM), kas içi yağ dokusu (IMAT), visseral yağ dokusu (KDV) ve deri altı yağ dokusu (SAT) gibi çeşitli doku tiplerini yoğunluk bazlı eşikler kullanarak yarı otomatik olarak etiketleme olanağını sağlayan program, her dokunun genel kesitsel alanlarının ölçülmesine izin verir. Bu ölçümler daha sonra, genellikle bir hastanın boy karesine göre normalleşmeden sonra, popülasyona dayalı eşiklere göre sarkopeni ve sarkopenik obeziteyi tanımlamak için toplam vücut iskelet kası kütlesini ve adipozitesini tahmin etmek için kullanılır.
Avrutin ve ark.14 tarafından geliştirilen iskelet kasının doğrusal ölçümleri kullanılarak geliştirilen yeni bir yöntem, L3 kesiti14,15’inMR ve BT görüntülerini kullanarak toplam kas kütlesini tahmin etmede eşit derecede güvenilir olma potansiyelini göstermiştir. Psoas ve paraspinal kas grupları L3 bölgesinin kas yüzey alanının çoğunu oluşturur ve yüksek işlevselliğe sahiptir, bu da genel kas gücünün yüksek doğruluk tahmincileri olabileceğini ve böylece doğrusal ölçüm14,15‘in baş adayları olabileceğini düşündürmektedir. Kas yüzey alanını hesaplamak için psoas ve paraspinal kas gruplarının yatay ve dikey ölçümleri, 90° kesişen düz çizgiler çizmek için bir cetvel aracı kullanılarak elde edilir. Her kas grubunun yatay ve dikey ölçümleri, her kas grubunun yüzey alanını tahmin etmek için çarpılır, daha sonra hastanın yüksekliğine bölündüğünde doğrusal bir kas indeksi hesaplamak için kullanılır. Minimum eğitimle, tüm bu süreç 1 dakikadan az sürebilir.
Vücut kompozisyon ölçümlerinin hasta bakımı üzerindeki potansiyel etkileri göz önüne alındığında, erişilebilir eğitim materyalleri oluşturmak için acil bir ihtiyaç vardır. Bu yazıda, avcılar ve klinik araştırmacılar için sırasıyla iskelet kas kütlesi ve vücut kompozisyonunu ölçmek için Avrutin ve ark.14 ve Mourtzakis ve ark.13 tarafından geliştirilen iki yöntemin ayrıntılı bir açıklamasını sunuyoruz.
Psoas kası, paraspinal kas grupları ve eğik kaslar genel kas kütlesi ile yakından ilişkilidir5. Özellikle, üçüncü bel omurunun (L3) orta noktasındaki bu kas gruplarının BT veya MRI kesiti içindeki yüzey alanı, genel kas kütlesi ile oldukça ilişkilidir, bu da bu görüntüyü araştırmacılar veya klinisyenler için sarkopeni 1,2,13’üdeğerlendirirken kullanmak için ideal bir görüntühalinegetirir. Segmentasyon ve lineer ölçümler, hastalarda vücut kompozisyonunun değerlendirilmesinde ve sarkopeni ve sarkopenik obezite gibi kötü prognostik durumların belirlenmesinde büyük değer göstermiştir16,17. Araştırmalar, kas kütlesi ölçümlerinin kemoterapi ve kemoterapötik toksisite gibi büyük ameliyatlar veya tedavi planlarından sonra sağkalım ve büyük komplikasyon riskleri ile ilişkili olduğunu göstermiştir16,17,18. Bu nedenle, klinisyenlerin tedavi seçenekleri konusunda hastalara danışmadan önce vücut kompozisyonu verilerine sahip olmaları faydalı olabilir.
Şu anda, vücut kompozisyonunu değerlendirmenin çeşitli yöntemleri vardır. Densitometri12 ve hava deplasmanı pletirimografisi (ADP)19gibi çeşitli yöntemler, yüzde vücut yağ ve vücut yoğunluğunu tahmin etmek için sırasıyla hava ağırlığını ve yer değiştirmeyi kullanır. Bu yöntemler yararlı olsa da, yağ dokusu dağılımını belirleyemezler5,19. BIA gibi diğer vücut kompozisyonu analitik teknikleri, analizlerini yağ kütlesinin ve yağsız kütlenin farklı elektrik özelliklerine dayandırır12. Bununla birlikte, bir kez daha bu teknik yağ dağılımlarını yeterince değerlendiremiyor ve daha doğru ölçümler için etnik köken, yaş ve cinsiyet gibi daha fazla bilgi gerektiriyor19. Tersine, DEXA gibi değerlendirmelerin vücut kompozisyonu değerlendirmesinde yararlı olduğu gösterilmiştir, ancak artan adipozite ile kas kütlesini abartma eğilimi vardır12. Çeşitli protokoller ayrıca, sarkopeni değerlendirmesi ve beslenme değerlendirmesi için BIA vücut kompozisyon analizi ile iyi korelasyona sahip olduğu gösterilen DICOM görüntüleme yazılımı içinde kas kütlesi ve yağ dokusu verilerini elde etmek için İlgi Alanı (ROI) yöntemini kullanmıştır20,21.
Mourtzakis ve ark. tarafından geliştirilen segmentasyon prosedürü, çoğu BT veya MRI görüntüsünde yapılabildiğinden ve yağ dokusu dağılımlarını ve kas bölgesini doğru bir şekilde belirlediğinden alternatif vücut kompozisyon değerlendirmelerine göre avantajlıdır13. Ek olarak, eksenel L3 segmentasyonu, hasta obezite durumuna bakılmaksızın doğruluk avantajına sahiptir13. Yukarıda belirtilen alternatiflere benzer şekilde, Avrutin ve ark.14 tarafından geliştirilen doğrusal önlemler tekniği yağ dağılımını değerlendirme yeteneğine sahip değildir. Son zamanlarda, araştırmacılar vücut segmentasyonunda, özellikle psoas kaslarını tek başına ölçen yöntemlerde farklılık gösterdiler22. Psoas kas kütlesi tek başına bel kası miktarını veya sistematik kas israfını yüksek oranda temsil etmez ve klinik sonuçlarla yüksek oranda ilişkili olmayabilir22. Psoas kası değerlendirmede ana kas grubu olduğu için bu sorun doğrusal ölçümde daha fazla endişe verici olabilir. Bununla birlikte, özetlenen tekniğimiz, kesitsel kas kütlesinin hızlı ve rahat bir şekilde değerlendirilmesini sürdürürken, daha doğru bir ölçüm yapmak için bilateral psoas ve paraspinal kas tahminlerini içerir. BT/MRI doğrusal ölçüm ve segmentasyon yöntemleri ile bunların klinik sonuçlarla korelasyonu arasındaki uygunlığı doğrulayan gelecekteki çalışmalar garanti edilmektedir.
Hem L3 segmentasyonu hem de doğrusal ölçüm prosedürleri başlangıçta vücut çapındaki kas içeriğini hızlı ve doğru bir şekilde değerlendirmek için tasarlanmıştır. Protokol, sadece L3 omurlarında segmentlere ayırarak, araştırmacılara veya klinisyenlere hastanın yağsız kas kütlesini ve adipozite durumunu belirlemek için yeterli bilgi sağlarken zaman kazandırır. Bununla birlikte, L3 segmentasyonu tam gövde segmentasyonundan çok daha az zaman alsa da, Slice-O-Matic yazılımını kullanmak hala zaman alıcı ve pahalı olabilir. Tersine, lineer ölçümler kritik durumdaki hastalarda kas durumunu ve sarkopeniyi değerlendirmede L3 segmentasyonu kadar doğru olma potansiyeline sahiptir14,15. Doğrusal ölçümlerle ölçülen iskelet kasının segmentasyonla ölçülen değerle yakından ilişkili olduğu T3 renal hücreli karsinom kohortunda bu ilişkiyi ortaya koyduk (Şekil 6). Daha da önemlisi, yöntem son derece hızlıdır ve görüntüleme yazılımı ücretsizdir. Bununla birlikte, doğrusal ölçüm prosedürünün en dikkat çekici sınırlaması, klinisyenleri kas içeriğinin genel değerlendirmesinin yeterli olduğu bağlamlarla sınırlayan yağ dokusu içeriğini değerlendirme yeteneğine sahip olmamasıdır.
Hem segmentasyon hem de doğrusal ölçüm prosedürlerinde üç kritik adım vardır. İlk olarak, klinisyenler ve araştırmacılar tutarlılık elde etmek için L3 omurlarının ortasını tanımlamalıdır. L3 omurunun ortası, enine işlemlerin iliğinin en belirgin olduğu dilim olacaktır. Eksenel L3 omur dilimi, çapraz bağlı sagittal veya koronal görünüm yardımıyla daha kolay tanımlanır. Araştırmacılar veya klinisyenler ilk olarak L1 omurlarını veya sakrumunu referans noktası olarak bulabilirler, beş yerine altı bel omurunun varlığının normal bir varyant olduğunu akılda tutarak. Bir sonraki önemli adım kasları tanımlamaktır. Doğrusal ölçümlerde, dikey ve yatay ölçümler alırken quadratus lumborum dahil edilmelidir. Üçüncü olarak, araştırmacılar segmentasyon protokolünde KDV’yi etiketlerken de çok dikkat etmelidir, çünkü kolon içeriği bazen viseral yağ dokusu olarak etiketlenebilir23. Böyle bir hata oluştuğunda, araştırmacılar bir sonraki adıma geçmeden önce bu alanları silmelidir.
Segmentasyonda yaygın bir sorun zayıf BT veya MRI görüntü kalitesidir (örnekler için Temsilci Sonuçları’ne bakın). Bazı durumlarda, düşük kalite görüntüyü işe yaramaz hale getirmez, ancak diğer durumlarda görüntünün analizden dışlanmaları gerekebilir. Tek bir görüntünün segmentasyonunun başka, muhtemelen kaçınılmaz bir sınırlaması, görüntüden görüntüye katı organ konumunun rastgele varyasyonunu içerir.
Hem L3 segmentasyon analizi hem de doğrusal ölçüm analizi için diğer yaygın sorunlar genellikle inter ve intra-rater varyasyonu ile ilgilidir. Çoğu protokolde olduğu gibi, gözlemciler arasında ve tek bir bireyin ayrı denemeleri arasında belirli bir miktar varyasyon beklenebilir. Analiz yapan birden fazla kişiyle oranlar arası varyasyonu hesaba katmak ve en aza indirmek için, araştırmacılar veya klinisyenlerden oluşan ekip, yüzey alanı ölçümlerinde ve aynı görüntüden ortalama HU’da istatistiksel olarak anlamlı varyasyonlar için test yapabilir. Aynı görüntü için çok benzer yüzey alanlarına sahip araştırmacıların veya klinisyenlerin dokuları yaklaşık olarak aynı şekilde etiketleyip etiketlemediğini göstereceğinden, HU varyasyonunu özel olarak not alın. Bir birey için önemli bir intra-rater varyasyonu test etmek için, araştırmacılar veya klinisyenler görüntülerin küçük bir alt kümesini alabilir ve her görüntünün tüm kopyaları dar, istatistiksel olarak önemsiz bir kenar boşluğuna gelene kadar her görüntüyü segmentlere ayırabilir.
Burada sunulan her iki protokolün de sadece tek bir dilim kullanıldığı için vücut kompozisyon analizinde sınırlamalar olduğunu kabul ediyoruz. Shen ve arkadaşları tarafından önerildikçe, 3D analiz karın viseral yağ için daha doğru bilgi sağlayabilir ve KDV için tek dilimli analiz erkekler ve kadınlar için farklıseviyelerdedir 24. Bununla birlikte, burada tartışılan protokoller, kliniklerde sarkopeni taraması için kullanılabilecek yağ dokusunun yanı sıra kasın hızlı değerlendirmelerini sağladığı için hala değerlidir.
Ayrıca, 3D makine öğrenimi algoritmaları, özellikle sinir-net tabanlı sınıflandırma algoritmaları25. Bunların geleneksel 2D segmentasyona gelecekteki potansiyel alternatifler olabileceğini kabul ediyoruz. Bununla birlikte, bu yöntemler klinik ve araştırma ortamlarında büyük BT ve MRI görüntülerinin geliştirilmesini, test edilmesini ve uygulanmasını gerektirir. Ayrıca, bu yöntemler genellikle makine öğrenimi algoritmalarını doğrulamak için temel bir başvuru oluşturmak için 2D segmentasyon analizi gerektirir. Bu nedenle, burada gösterilen protokoller büyük veri kümeleri veya 3D görüntüler kullanılamıyorsa yararlı olabilir ve bu protokoller, uygulanabilir olduklarında makine öğrenimi algoritmalarının geliştirilmesine ve doğrulanabilmesine yardımcı olmak için uygulanabilir. Bu nedenle, klinisyenlerin ve araştırmacıların bu eğitim videosundan yararlanabileceğine ve otomatik analiz mevcut olmadan önce ve bu ileri teknolojinin uygulanmasını kolaylaştırmak için bu hızlı ve güvenilir yöntemleri ön tarama olarak benimseyebileceğine inanıyoruz.
Yağ dokusu dağılımını ve iskelet kas kütlesini hızlı bir şekilde analiz etme yeteneği, kanser tedavisi ve araştırmalarından kardiyak hastalığa kadar geniş bir klinik ilgi alanına sahiptir5. Yaygın olarak kullanılan diğer yöntemlerle karşılaştırıldığında, Mourtzakis ve ark. Slice-O-Matic’te L3 segmentasyon prosedürü yağ dokusu dağılımını doğru ve hızlı bir şekilde değerlendirebilir ve sarkopeni durumunu5, 12,13,19olarak belirleyebilir. Ek olarak, iskelet kas kütlesi hakkında bilginin yeterli olduğu bağlamlarda, L3 lineer ölçüm prosedürü cerrahi, radyoterapi ve kemoterapi 1 ,2,4,6,7,8gibi kanser tedavilerinde başarıyı tahmin etmeye yardımcı olacak güvenilir ve çok hızlı bir araçtır. Bu eğitim videosunun ve el yazmasının amacı, klinisyenlerin klinik ortamında vücut kompozisyonunu daha kolay değerlendirebilmeleri için segmentasyon protokolünü ve gelecekteki kullanım için doğrusal ölçümleri açıkça belirlemektir.
The authors have nothing to disclose.
Yazarlar John Robinson & Churchill aile vakıflarının desteğini kabul etmek istiyor.
Centricity PACS Radiology RA 1000 Workstation | GE Healthcare | Image viewer to obtain subject's MRI and CT images | |
Slice-O-Matic 5.0 | TomoVision | Segmentation software used in this protocol. Other versions of this software may be used, but tools may be slightly different. | |
Horos | Nimble Co LLC d/b/a Purview | Linear segmentation software used in this protol, but researchers can use any image viewer with a ruler tool. |