La segmentation et les mesures linéaires quantifient la masse musculaire squelettique et les tissus adipeux à l’aide de la tomodensitométrie et/ou d’images d’imagerie par résonance magnétique. Ici, nous décrivons l’utilisation du logiciel Slice-O-Matic et de la visionneuse d’images Horos pour une analyse rapide et précise de la composition corporelle. Ces méthodes peuvent fournir des informations importantes pour le pronostic et la stratification du risque.
La composition corporelle est associée au risque de progression de la maladie et aux complications du traitement dans diverses conditions. Par conséquent, la quantification de la masse musculaire squelettique et des tissus adipeux sur la tomodensitométrie (CT) et/ou l’imagerie par résonance magnétique (IRM) peut éclairer l’évaluation du risque de chirurgie et le pronostic de la maladie. Cet article décrit deux méthodes de quantification décrites à l’origine par Mourtzakis et coll. et Avrutin et coll. : segmentation tissulaire et mesure linéaire du muscle squelettique. L’image transversale des patients au milieu de la troisième vertèbre lombaire a été obtenue pour les deux mesures. Pour la segmentation, les images ont été importées dans Slice-O-Matic et colorées pour le muscle squelettique, le tissu adipeux intramusculaire, le tissu adipeux viscéral, et le tissu adipeux sous-cutané. Ensuite, les surfaces de chaque type de tissu ont été calculées à l’aide de la fonction de surface de l’étiquette. Pour des mesures linéaires, la taille et la largeur des psoas bilatéraux et des muscles paraspinal au niveau de la troisième vertèbre lombaire sont mesurées et le calcul utilisant ces quatre valeurs rapporte la masse estimée de muscle squelettique. L’analyse de segmentation fournit des informations quantitatives et complètes sur la composition corporelle des patients, qui peuvent ensuite être corrélées avec la progression de la maladie. Cependant, le processus prend plus de temps et nécessite une formation spécialisée. Les mesures linéaires sont un outil efficace et clinique-friendly pour l’évaluation préopératoire rapide. Cependant, les mesures linéaires ne fournissent pas d’informations sur la composition du tissu adipeux. Néanmoins, ces méthodes ont de larges applications dans une variété de maladies pour prédire les résultats chirurgicaux, le risque de progression de la maladie et éclairer les options de traitement pour les patients.
L’évaluation de la sarcopénie et de la composition corporelle est actuellement d’un grand intérêt clinique. Bien que les définitions spécifiques de la sarcopénie varient en fonction du cadre et du contexte, toutes les définitions incluent une perte significative de masse musculaire squelettique ou de force musculaire, qui sont étroitement corrélées1,2,3. L’analyse de la composition corporelle intègre des mesures de la masse musculaire squelettique et de la distribution des tissus adipeux, fournissant des informations plus complètes sur l’aptitude générale des patients1,3,4. De même, le tissu adipeux distribué de manière disproportionnée, en particulier le tissu adipeux viscéral, s’est avéré être lié à diverses maladies, y compris les maladies cardiaques, le diabète de type II et le cancer5.
Médicalement, la sarcopénie et son évaluation par des mesures linéaires se sont à plusieurs reprises avérées un facteur pronostique fort pour la survie cancer-spécifique à travers des malignités et des résultats oncologiques suivant la chirurgie, la radiothérapie, et la chimiothérapie1,2,4,6,7,8. En particulier, des recherches antérieures démontrent que les patients atteints de sarcopénie ont diminué la survie spécifique au cancer et la survie globale1,2,9,10. Par conséquent, l’évaluation clinique précise et rapide de la progression de sarcopenia est importante en déterminant l’élection de traitement. Le profilage conventionnel de la composition du corps entier nécessite une analyse à un niveau tridimensionnel (3D) à l’aide de techniques d’imagerie, y compris la tomodensitométrie (TDM), l’imagerie par résonance magnétique (IRM), la densitométrie osseuse (DEXA) et l’analyse d’impédance bioélectrique (ARA), qui prennent beaucoup de temps, sont coûteuses et nécessitent une formation approfondie5,11. Un autre inconvénient est un manque d’informations sur la distribution adipeuse, en particulier pour la pléthysmographie par déplacement d’air (ADP) et DEXA12. Par conséquent, l’évaluation et la détermination de la sarcopénie et de la composition corporelle avec l’utilisation de modalités d’imagerie transversales conventionnelles telles que la TDM ou l’IRM, qui sont utilisées dans le cadre de la pratique clinique standard, ont une grande valeur clinique5.
Un logiciel de segmentation couramment utilisé dans le cadre de la recherche clinique est le programme Slice-O-Matic développé par TomoVision. À l’aide de la procédure de segmentation de Mourtzakis et coll.13, le programme permet aux chercheurs ou aux cliniciens d’étiqueter semi-automatiquement divers types de tissus tels que le muscle squelettique (SM), le tissu adipeux intramusculaire (IMAT), le tissu adipeux viscéral (VAT) et le tissu adipeux sous-cutané (SAT) en utilisant des seuils basés sur la densité, permettant de mesurer les zones transversales globales de chaque tissu. Ces mesures sont alors employées pour estimer la masse et l’adiposity de muscle squelettique de corps total, souvent après normalisation par un patient’ taille de s au carré, pour identifier sarcopenia et obésité sarcopénique par des seuils basés sur la population.
Une méthode récemment développée par Avrutin et al.14 utilisant des mesures linéaires du muscle squelettique développé a montré le potentiel d’être tout aussi fiable dans l’estimation de la masse musculaire totale en utilisant des images IRM et CT de la section transversale L314,15. Les groupes musculaires psoas et paraspinal constituent une grande partie de la surface musculaire de la région L3 et ont une fonctionnalité élevée, ce qui suggère qu’ils peuvent être des prédicteurs de haute fidélité de la force musculaire globale, et donc les principaux candidats de la mesure linéaire14,15. Pour calculer la surface musculaire, des mesures horizontales et verticales des groupes musculaires psoas et paraspinal sont obtenues à l’aide d’un outil de règle pour dessiner des lignes droites se croisant à 90°. Les mesures horizontales et verticales de chaque groupe musculaire sont multipliées pour estimer la surface de chaque groupe musculaire, qui est ensuite utilisée pour calculer un indice musculaire linéaire lorsqu’il est divisé par la taille du patient. Avec une formation minimale, l’ensemble de ce processus peut prendre moins de 1 min.
Compte tenu des implications potentielles des mesures de la composition corporelle sur les soins aux patients, il est urgent de créer du matériel de formation accessible. Dans cet article, nous fournissons une description détaillée de deux méthodes développées par Avrutin et al.14 et Mourtzakis et al.13 pour quantifier la masse musculaire squelettique et la composition corporelle, respectivement, pour les fournisseurs et les chercheurs cliniques.
Le muscle psoas, les groupes de muscle paraspinal, et les muscles obliques étroitement corrélés avec la masse musculaire globale5. En particulier, la surface au sein d’une section transversale de TDM ou d’IRM de ces groupes musculaires au milieu de la troisième vertèbre lombaire (L3) est fortement corrélée avec la masse musculaire globale, ce qui fait de cette image une image idéale pour les chercheurs ou les cliniciens à utiliser lors de l’évaluation de la sarcopénie1,2,13. La segmentation et les mesures linéaires ont démontré une grande valeur dans l’évaluation de la composition corporelle et l’identification des mauvaises conditions pronostiques telles que la sarcopénie et l’obésité sarcopénique chez les patients16,17. La recherche a montré que les mesures de la masse musculaire sont associées à la survie et aux risques de complications majeures à la suite de chirurgies majeures ou de plans de traitement tels que la chimiothérapie et la toxicité chimiothérapeutique16,17,18. Par conséquent, nous voudrions qu’il puisse être avantageux pour les cliniciens d’avoir des données de composition corporelle avant de conseiller les patients concernant les options de traitement.
Actuellement, il existe plusieurs méthodes d’évaluation de la composition corporelle. Plusieurs méthodes, telles que la densitométrie12 et la pléthysmographie par déplacement d’air (ADP)19,utilisent respectivement le poids de l’air et le déplacement pour estimer le pourcentage de graisse corporelle et la densité corporelle. Bien que ces méthodes puissent être utiles, elles sont incapables de déterminer la distribution des tissus adipeux5,19. D’autres techniques analytiques de composition corporelle, telles que la BIA, fondent leur analyse sur les différentes caractéristiques électriques de la masse grasse et de la masse sans graisse12. Cependant, une fois de plus, cette technique ne parvient pas à évaluer adéquatement les distributions de graisse, et elle nécessite également plus d’informations telles que l’ethnicité, l’âge et le sexe pour des mesures plus précises19. Inversement, des évaluations telles que DEXA se sont avérées utiles dans l’évaluation de la composition corporelle, mais ont tendance à surestimer la masse musculaire avec une adipositécroissante 12. Plusieurs protocoles ont également utilisé la méthode de la région d’intérêt (ROI) pour obtenir des données sur la masse musculaire et les tissus adipeux dans le logiciel DICOM-visualisation, qui s’est avéré avoir une bonne corrélation avec l’analyse de la composition corporelle des ARA pour l’évaluation de la sarcopénie et l’évaluation nutritionnelle20,21.
La procédure de segmentation développée par Mourtzakis et al. présente un avantage par rapport aux évaluations alternatives de la composition corporelle puisqu’elle peut être effectuée sur la plupart des images de TDM ou d’IRM et détermine avec précision les distributions des tissus adipeux et la zone musculaire13. De plus, la segmentation L3 axiale présente l’avantage de la précision quel que soit le statut d’obésité du patient13. Semblable aux alternatives susmentionnées, la technique de mesures linéaires développée par Avrutin et al.14 n’a pas la capacité d’évaluer la distribution des graisses. Récemment, les chercheurs ont démontré disparate dans la segmentation du corps, en particulier dans les méthodes mesurant les muscles psoas seuls22. La masse musculaire de Psoas seule n’est pas très représentative de la quantité de muscle lombaire ou de l’atrpillage musculaire systématique, et peut ne pas être fortement corrélée avec les résultats cliniques22. Ce problème peut être plus préoccupant dans la mesure linéaire, car le muscle psoas est le groupe musculaire principal dans l’évaluation. Cependant, notre technique décrite inclut les estimations bilatérales de psoas et de muscle paraspinal pour évaluer une évaluation plus précise, tout en restant rapide et commode de la masse de muscle en coupe transversale. De futures études qui valident la conformité entre les méthodes de mesure et de segmentation linéaires de CT/MRI et leur corrélation avec des résultats cliniques sont justifiées.
La segmentation L3 et les procédures de mesure linéaire ont été initialement conçues pour évaluer rapidement et avec précision le contenu musculaire à l’échelle du corps. En segmentant uniquement les vertèbres L3, le protocole permet de gagner du temps tout en fournissant aux chercheurs ou aux cliniciens suffisamment d’informations pour déterminer la masse musculaire maigre et l’état d’adiposité du patient. Cependant, même si la segmentation L3 prend beaucoup moins de temps que la segmentation complète du corps, l’utilisation du logiciel Slice-O-Matic peut toujours être longue et coûteuse. Inversement, les mesures linéaires ont le potentiel d’être aussi précises que la segmentation L3 dans l’évaluation de l’état musculaire et de la sarcopénie chez les patients gravement malades14,15. Nous avons démontré une telle relation dans la cohorte du carcinome à cellules rénales T3, où le muscle squelettique mesuré par des mesures linéaires est étroitement corrélé avec la valeur mesurée par segmentation (Figure 6). Il est important de savoir que la méthode est extrêmement rapide et que le logiciel d’imagerie est gratuit. Cependant, la limitation la plus notable à la procédure de mesure linéaire est son manque de capacité d’évaluer le contenu de tissu adipeux, qui limite les cliniciens aux contextes où l’évaluation générale du contenu musculaire est suffisante.
Il y a trois étapes critiques dans les procédures de segmentation et de mesure linéaire. Tout d’abord, les cliniciens et les chercheurs devraient identifier le milieu des vertèbres L3 pour atteindre la cohérence. Le milieu des vertèbres L3 sera la tranche où la moelle des processus transversaux est la plus proéminente. La tranche axiale des vertèbres L3 est plus facilement identifiée à l’aide d’une vue sagittale ou coronale réticulée. Les chercheurs ou les cliniciens peuvent d’abord trouver des vertèbres L1 ou des sacrums comme point de référence, en gardant à l’esprit que la présence de six vertèbres lombaires au lieu de cinq est une variante normale. La prochaine étape cruciale est l’identification des muscles. Dans les mesures linéaires, le quadratus lumborum ne doit pas être inclus lors de la prise des mesures verticales et horizontales. Troisièmement, les chercheurs doivent également porter une attention particulière lors de l’étiquetage de la TVA dans le protocole de segmentation, car la teneur en côlon peut parfois être étiquetée comme tissu adipeux viscéral23. Lorsqu’une telle erreur se produit, les chercheurs devraient effacer ces zones avant de passer à l’étape suivante.
Un problème courant dans la segmentation est la mauvaise qualité de l’image CT ou MRI (voir résultats représentatifs pour des exemples). Dans certains cas, la mauvaise qualité ne rend pas l’image inutile, mais dans d’autres cas, l’image peut devoir être exclue de l’analyse. Une autre limitation, peut-être inévitable, de la segmentation d’une seule image comprend la variation aléatoire de la position de l’organe solide d’une image à l’autre.
D’autres problèmes courants pour l’analyse de segmentation L3 et l’analyse de mesure linéaire sont souvent liés à la variation inter et intra-évaluateur. Comme ce serait le cas pour la plupart des protocoles, on peut s’attendre à une certaine variation entre les observateurs et entre les essais distincts d’une seule personne. Pour tenir compte et minimiser la variation inter-évaluateurs avec plusieurs personnes effectuant des analyses, l’équipe de chercheurs ou de cliniciens peut tester toute variation statistiquement significative dans les mesures de surface et la HU moyenne à partir de la même image. Prenez note en particulier de la variation hu car cela indiquera si les chercheurs ou les cliniciens qui ont des surfaces très similaires pour la même image marquent en effet les tissus approximativement les mêmes. Pour tester la variation intra-évaluatrice significative pour un individu, les chercheurs ou les cliniciens peuvent prendre un petit sous-ensemble d’images et segmenter chaque image jusqu’à ce que toutes les répliques de chaque image se trouvent dans une marge étroite et statistiquement insignifiante.
Nous reconnaissons que les deux protocoles présentés ici ont des limites dans l’analyse de la composition corporelle car une seule tranche est utilisée. Comme suggéré par Shen et al., l’analyse 3D peut fournir des informations plus précises pour la graisse viscérale abdominale, et l’analyse en une seule tranche pour la TVA est à différents niveaux pour les hommes et les femmes24. Cependant, les protocoles discutés ici sont toujours valables car ils fournissent des évaluations rapides du muscle aussi bien que du tissu adipeux, qui peut être employé pour le criblage de sarcopénie dans les cliniques.
De plus, il existe de nombreux protocoles automatisés d’analyse de la composition corporelle utilisant des algorithmes d’apprentissage automatique 3D, en particulier des algorithmes de classification basés sur des réseaux neuronaux25. Nous reconnaissons qu’il peut s’agir des futures alternatives potentielles à la segmentation 2D traditionnelle. Cependant, ces méthodes nécessitent que de grands ensembles de données d’images de TDM et d’IRM soient développés, testés et mis en œuvre dans des contextes cliniques et de recherche. De plus, ces méthodes nécessitent souvent une analyse de segmentation 2D pour établir une référence de base par rapport à laquelle valider les algorithmes d’apprentissage automatique. Les protocoles présentés ici peuvent donc être utiles lorsque de grands ensembles de données ou images 3D ne sont pas disponibles, et ces protocoles peuvent être appliqués pour aider à développer et à valider des algorithmes d’apprentissage automatique lorsqu’ils sont applicables. Ainsi, nous croyons que les cliniciens et les chercheurs peuvent bénéficier de cette vidéo de formation et adopter ces méthodes rapides et fiables comme dépistage préliminaire avant que l’analyse automatisée ne soit disponible et afin de faciliter la mise en œuvre de cette technologie de pointe.
La capacité d’analyser rapidement la distribution du tissu adipeux et la masse musculaire squelettique a un large éventail d’intérêts cliniques allant du traitement du cancer et de la recherche aux maladies cardiaques5. Par rapport à d’autres méthodes couramment utilisées, le Mourtzakis et al. La procédure de segmentation L3 dans Slice-O-Matic peut évaluer avec précision et rapidité la distribution des tissus adipeux et déterminer le statut de sarcopénie5,12,13,19. De plus, dans les contextes où les informations sur la masse musculaire squelettique sont suffisantes, la procédure de mesure linéaire L3 est un outil fiable et très rapide pour aider à prédire le succès des traitements du cancer tels que la chirurgie, la radiothérapie et la chimiothérapie1,2,4,6,7,8. Le but de cette vidéo et de ce manuscrit de formation est de délimiter clairement le protocole de segmentation et de mesures linéaires pour une utilisation future afin que les cliniciens puissent plus facilement évaluer la composition corporelle en clinique.
The authors have nothing to disclose.
Les auteurs tiennent à souligner le soutien des fondations familiales John Robinson et Churchill.
Centricity PACS Radiology RA 1000 Workstation | GE Healthcare | Image viewer to obtain subject's MRI and CT images | |
Slice-O-Matic 5.0 | TomoVision | Segmentation software used in this protocol. Other versions of this software may be used, but tools may be slightly different. | |
Horos | Nimble Co LLC d/b/a Purview | Linear segmentation software used in this protol, but researchers can use any image viewer with a ruler tool. |