В этом протоколе представлены методы характеристики нейровоспалительного и гемодинамического ответа на легкую черепно-мозговую травму и интеграции этих данных в рамках многомерного системного анализа с использованием частичной регрессии наименьших квадратов.
Легкие черепно-мозговые травмы (mTBI) являются серьезной проблемой общественного здравоохранения. Повторное воздействие МТМТ может привести к кумулятивному, длительному функциональному дефициту. Многочисленные исследования, проведенные нашей группой и другими, показали, что mTBI стимулирует экспрессию цитокинов и активирует микроглию, уменьшает мозговой кровоток и обмен веществ, а также ухудшает цереброваскулярную реактивность. Кроме того, в нескольких работах сообщалось о связи между расстройствами в этих нейровоспалительных и гемодинамических маркерах и когнитивными нарушениями. Здесь мы подробно описываем методы характеристики нейровоспалительного и гемодинамического тканевого ответа на МТМТ у мышей. В частности, мы описываем, как выполнить модель снижения веса mTBI, как продольно измерять мозговой кровоток с использованием неинвазивного оптического метода, называемого диффузной корреляционной спектроскопией, и как выполнить мультиплексированный иммуноанализ Luminex на образцах тканей мозга для количественной оценки цитокинов и иммуномодулирующих фосфо-белков (например, в пределах путей MAPK и NFκB), которые реагируют и регулируют активность микроглии и других нервных иммунных клеток. Наконец, мы подробно расскажем, как интегрировать эти данные с использованием подхода к многомерному системному анализу, чтобы понять взаимосвязи между всеми этими переменными. Понимание взаимосвязей между этими физиологическими и молекулярными переменными в конечном итоге позволит нам определить механизмы, ответственные за mTBI.
Обзор
Легкие черепно-мозговые травмы (мТБИ) затрагивают ~ 1,6-3,8 миллиона спортсменов ежегодно1. Эти травмы, включая субконтузивные и сотрясающие травмы, могут оставить пациентов с преходящими физическими, эмоциональными, психологическими и когнитивными симптомами2. Более того, повторяющиеся mTBI (rmTBI), поддерживаемые в «окне уязвимости», могут привести к кумулятивной серьезности и продолжительности когнитивных последствий, которые длятся дольше, чем эффекты одной МЧТв одиночку 3, и в конечном итоге даже к постоянной потере функции 4,5,6. Хотя многие пациенты выздоравливают в течение относительно короткого периода времени ( 1 месяца, причем некоторые из них длятся до 1 года 3,7,8,9. Несмотря на высокую распространенность и длительные последствия этих травм, механизмы травм плохо изучены, и не существует эффективных стратегий лечения.
Учитывая высокую вариабельность исходов после mTBI/rmTBI, одной из проблем при выявлении молекулярных триггеров на ранней стадии из ткани, полученных в исследованиях терминальной mTBI/rmTBI, является отсутствие продольных данных, демонстрирующих окончательные «острые молекулярные связи» этих молекулярных триггеров с долгосрочными исходами. Чтобы преодолеть эту проблему, наша группа обнаружила, что остро сниженный мозговой кровоток, измеренный остро с использованием оптического инструмента, называемого диффузной корреляционной спектроскопией (DCS), сильно коррелирует с долгосрочным когнитивным результатом в мышиной модели rmTBI10. Используя этот гемодинамический биомаркер, мы показали, что у мышей с остро низким мозговым кровотоком (и, как следствие, худшим прогнозируемым долгосрочным исходом) наблюдается сопутствующее острое увеличение нейрональной фосфо-сигнализации в путях MAPK и NFκB, увеличение нейронной экспрессии провоспалительных цитокинов и увеличение экспрессии фагоцитарного / микроглиального маркера Iba111 . Эти данные свидетельствуют о возможной роли нейрональной фосфо-сигнализации, экспрессии цитокинов и активации микроглии как в острой регуляции мозгового кровотока после травмы, так и в запуске сигнального каскада, который приводит к дисфункции нейронов и худшему когнитивному результату. Здесь мы подробно описываем наш подход к одновременному исследованию гемодинамической и нейровоспалительной среды после rmTBI и как интегрировать эти сложные наборы данных. В частности, мы описываем процедуры для четырех ключевых шагов к этому комплексному подходу: (1) модель снижения веса легкой черепно-мозговой травмы, (2) оценка мозгового кровотока с помощью диффузной корреляционной спектроскопии, (3) количественная оценка нейровоспалительной среды и (4) интеграция данных (рисунок 1). Ниже мы предоставляем краткое введение в каждый из этих ключевых шагов, чтобы помочь читателям понять обоснование наших методов. Остальная часть рукописи содержит подробный протокол для каждого из этих ключевых шагов.
Модель снижения веса легкой черепно-мозговой травмы
Хотя существует много отличных доклинических моделей повторяющейся легкой ЧМТ 12,13,14,15,16,17,18, мы используем хорошо зарекомендовавшую себя и клинически значимую модель закрытой черепно-мозговой травмы. Ключевые особенности этой модели включают (1) тупое воздействие неповрежденного черепа / кожи головы с последующим неограниченным вращением головы вокруг шеи, (2) отсутствие явной структурной черепно-мозговой травмы, отека, повреждения гематоэнцефалического барьера, острой гибели клеток или хронической потери мозговой ткани и (3) стойкого (до 1 года) когнитивного дефицита, который возникает только после многократных ударов19 (Рисунок 2).
Оценка мозгового кровотока с помощью диффузной корреляционной спектроскопии
Диффузная корреляционная спектроскопия (DCS) является неинвазивным оптическим методом, который измеряет кровоток 5,20,21. В DCS источник света ближнего инфракрасного диапазона помещается на поверхность ткани. Детектор размещается на фиксированном расстоянии от источника на поверхности ткани для обнаружения света, который многократно рассеян через ткань (рисунок 3). Рассеяние движущихся красных кровяных клеток приводит к тому, что обнаруженная интенсивность света колеблется со временем. Простая аналитическая модель, известная как теория корреляционной диффузии, используется для связи этих колебаний интенсивности с индексом кровотока (CBFi, рисунок 4). Хотя единицы CBFi (см2 /с) не являются традиционными единицами потока (мл / мин / 100 г), предыдущее исследование на мышах показало, что CBFi сильно коррелирует с мозговым кровотоком, измеренным артериальным спином, меченым МРТ21.
Для справки, используемый здесь прибор DCS был построен собственными силами и состоит из лазера когерентной длиной 852 нм, массива из 4 фотонных лавинных фотодиодов и аппаратной платы автокоррелятора (один тау, 8 каналов, минимальное время выборки 100 нс)21,22. Данные собираются с помощью самодельного программного обеспечения, написанного в LabView. Животный интерфейс для устройства состоит из многомодового исходного волокна 400 мкм (диапазон длин волн 400-2200 нм, чистый кремнеземный сердечник, жесткая оболочка TECS) и одномодового детекторного волокна 780 нм (диапазон длин волн 780-970 нм, чистый кремнеземный сердечник, жесткая оболочка TECS, отсечка режима 730 ± 30 нм секундного режима), расположенных на расстоянии 6 мм друг от друга и встроенных в черный 3D-печатный датчик (4 мм x 8 мм, Рисунок 3).
Количественная оценка нейровоспалительной среды
Хотя нейровоспаление регулируется различными клеточными процессами, двумя ключевыми соответствующими механизмами являются внеклеточная сигнализация цитокинами / хемокинами и внутриклеточная сигнализация фосфо-белками. Чтобы исследовать нейровоспалительную среду головного мозга после травмы, мозг извлекают из мышей, микрорассекают, а цитокины / хемокины и фосфо-белки количественно оцениваются с использованием Luminex (рисунок 5, рисунок 6, рисунок 7). Мультиплексированные иммуноанализы Luminex позволяют одновременно количественно оценивать разнообразную коллекцию этих белков путем соединения иммуноферментных анализов (ИФА) с флуоресцентно помеченными магнитными шариками. Для каждого интересующего белка используются различные флуоресцентные метки, а шарики каждой метки функционализируются антителом захвата против этого конкретного белка. Сотни шариков для захвата каждого белка смешиваются вместе, помещаются в пластину из 96 лунок и инкубируются с образцом. После инкубации образца магнит используется для улавливания шариков в скважине, в то время как образец вымывается. Затем биотинилированное детектирующее антитело связывается с анализируемым веществом, представляющим интерес, чтобы сформировать сэндвич антитело-антиген, похожий на традиционный ИФА, но с ИФА для каждого белка, встречающегося на другой флуоресцентно помеченной бусине. Добавление фикоэритрин-конъюгированного стрептавидина (SAPE) завершает каждую реакцию. Затем прибор Luminex считывает шарики и разделяет сигнал в соответствии с каждой флуоресцентной меткой / белком.
Интеграция данных
Из-за большого количества аналитов (например, цитокинов), измеренных в анализе Luminex, анализ данных может быть трудно интерпретировать, если каждый количественный белок анализируется индивидуально. Для упрощения анализа и фиксации тенденций, наблюдаемых среди аналитов, мы используем метод многомерного анализа, называемый частичной регрессией наименьших квадратов (PLSR, рисунок 8)23. PLSR работает, идентифицируя ось весов, соответствующих каждому измеренному белку (т. Е. Цитокины или фосфо-белки, называемые «предикторными переменными»), которые вместе оптимально объясняют кодисперсию измеренных белков с переменной ответа (например, мозговой кровоток). Веса называются «нагрузками» и собираются в вектор, известный как латентная переменная (LV). Проецируя (называемое «скорингом») измеренные белковые данные на каждом из двух LN, данные могут быть повторно построены в терминах этих LV. После вычисления PLSR мы используем вариамационное вращение для идентификации нового РН, который максимизирует ковариацию между проекциями выборки на LV и предикторной переменной24. Такой подход позволяет определить LV1 как ось, для которой лучше всего объяснить дисперсию переменной ответа. LV2 максимизирует кодисперсию между переменной отклика и остаточными данными LV1, которые могут быть связаны с биологической или технической изменчивостью между образцами. Наконец, мы проводим перекрестную проверку Leave One Out (LOOCV), чтобы убедиться, что модель PLSR не сильно зависит от какой-либо одной выборки23.
В этом протоколе мы подробно описываем методы характеристики нейровоспалительного и гемодинамического ответа тканей на mTBI. Общий рабочий процесс описан на рисунке 1. В этом протоколе мыши подвергаются воздействию одного или нескольких мТБИ с использованием модели закрытой травмы головы с пониженным падением веса. Мозговой кровоток измеряется продольно до и в несколько временных точек после травмы. В момент, представляющий интерес для опроса о нейровоспалительных изменениях, животное усыпляется, а мозг извлекается. Области мозга, представляющие интерес, выделяются с помощью микродиссекции, а затем лизируются для извлечения белка. Лизаты затем используются как для мультиплексированных иммуноанализов Luminex цитокиновой и фосфо-белковой экспрессии, так и для вестерн-блоттинга. Наконец, этот целостный набор данных интегрируется с использованием частичного регрессионного анализа наименьших квадратов.
Здесь мы подробно описываем методы оценки гемодинамической и нейровоспалительной реакции на повторяющуюся легкую черепно-мозговую травму. Кроме того, мы показали, как интегрировать эти данные в рамках многомерного системного анализа с использованием частичной регрессии наименьших ?…
The authors have nothing to disclose.
Этот проект был поддержан Национальными институтами здравоохранения R21 NS104801 (EMB) и R01 NS115994 (LBW / EB) и детской медицинской премией Атланты Junior Faculty Focused Award (EMB). Эта работа также была поддержана Министерством обороны США через программы медицинских исследований, направляемые Конгрессом под номером премии. W81XWH-18-1-0669 (LBW/EMB). Мнения, интерпретации, выводы и рекомендации принадлежат автору и не обязательно одобряются Министерством обороны. Этот материал основан на работе, поддерживаемой Программой стипендий для аспирантов Национального научного фонда в рамках гранта No 1937971. Любые мнения, выводы, выводы или рекомендации, выраженные в этом материале, принадлежат авторам и не обязательно отражают взгляды Национального научного фонда.
Adjustable pipettes | any adjustable pipette | ||
Aluminum foil | VWR | 89107-726 | |
Bio-Plex cell lysis kit | C Bio-Rad | 171304012 | |
BRAND BRANDplates pureGrade Microplates, Nonsterile | BrandTech | 781602 96 | |
Complete mini protease inhibitor tablet | Sigma-Aldrich | 11836153001 | |
Depilatory cream | Amazon | Nair | |
DiH2O | VWR | VWRL0200-1000 | |
Handheld magnetic separator block for 96 well flat bottom plates | Millipore Sigma Catalogue | 40-285 | |
Hardware Autocorrelator Board | www.correlator.com | Flex05-8ch | |
Isoflurane 250 mL | MED-VET INTERNATIONAL | RXISO-250 | |
Kimwipe (11.2 x 21.3 cm) | VWR | 21905-026 | |
Laboratory vortex mixer | VWR | 10153-838 | |
LabView | National Instruments | LabVIEW | |
Luminex 200, HTS, FLEXMAP 3D, or MAGPIX with xPONENT software | Luminex Corporation | ||
Luminex Drive Fluid | Luminex | MPXDF-4PK | |
Luminex sheath fluid | EMD Millipore | SHEATHFLUID | |
MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel – Premixed 32 Plex – Immunology Multiplex Assay | Millipore Sigma | MCYTMAG-70K-PX32 | |
MILLIPLEX MAPK/SAPK Signaling 10-Plex Kit-Cell Signaling Multiplex Assay | Millipore Sigma | 48-660MAG | |
Mini LabRoller rotator | VWR | 10136-084 | |
Phenylmethylsulfonyl fluoride | Sigma-Aldrich | P7626-1G | |
Phosphate-buffered Saline (PBS) | VWR | 97064-158 | |
Plate Sealer | VWR | 82050-992 | |
Polypropylene microfuge tubes | VWR | 20901-547 | |
Mini LabRoller | Millipore Sigma | Z674591 | |
Reagent Reservoirs | VWR | 89094-668 | |
R Programming Language | |||
RStudio | www.rstudio.com | ||
Sonicator | |||
Titer plate shaker | VWR | 12620-926 | |
Tween20 | Sigma-Aldrich | P9416-50ML | |
1 m acrylic guide tube | McMaster-Carr | 49035K85 | |
4 photon counting avalanche photodiode | Perkin-Elmer | SPCM-AQ4C-IO | |
400 um multimode source fiber | Thorlabs Inc. | FT-400-EMT | |
54 g bolt | Ace Hardware | 0.95 cm basic body diameter, 2 cm head diameter, 10.2 cm length | |
780 nm single mode detector fiber | Thorlabs Inc. | 780HP | |
852 nm long-coherence length laser | TOPTICA Photonics | iBeam smart |