This protocol has been developed to study the dimer-dodecamer transition of TmPep1050, an M42 aminopeptidase, at the structural level. It is a straightforward pipeline starting from protein purification to X-ray data processing. Crystallogenesis, data set indexation, and molecular replacement have been emphasized through a case of study, TmPep1050H60A H307A variant.
The M42 aminopeptidases form functionally active complexes made of 12 subunits. Their assembly process appears to be regulated by their metal ion cofactors triggering a dimer-dodecamer transition. Upon metal ion binding, several structural modifications occur in the active site and at the interaction interface, shaping dimers to promote the self-assembly. To observe such modifications, stable oligomers must be isolated prior to structural study. Reported here is a method that allows the purification of stable dodecamers and dimers of TmPep1050, an M42 aminopeptidase of T. maritima, and their structure determination by X-ray crystallography. Dimers were prepared from dodecamers by removing metal ions with a chelating agent. Without their cofactor, dodecamers became less stable and were fully dissociated upon heating. The oligomeric structures were solved by the straightforward molecular replacement approach. To illustrate the methodology, the structure of a TmPep1050 variant, totally impaired in metal ion binding, is presented showing no further breakdown of dimers to monomers.
Oligomerization is a predominant process that dictates the biological functions of many proteins. In Escherichia coli, it is estimated that only 35% of proteins are monomeric1. Some proteins, called morpheeins, can even adopt several oligomeric states with subunits having distinct structure in each oligomeric state2. The transition between their oligomeric states is often a mean to regulate protein activity as each oligomeric state may have a different specific activity or function. Several examples of morpheeins have been well-documented in literature, notably the porphobilinogen synthase3, HPr kinase/phosphatase4, Lon protease5, lactate dehydrogenase6, glyceraldehyde-3-phosphate dehydrogenase7, pyruvate kinase8, citrate synthase9, and ribonuclease A10. Recently, we described the M42 aminopeptidase TmPep1050, another example of enzyme with morpheein-like behavior, whose activity depends on its oligomeric states11. The transition between its oligomeric states is mediated by its metallic cofactors which induce several structural modifications of the subunits.
The M42 aminopeptidase family belongs to the MH clan12,13, and is widely distributed among Bacteria and Archaea14. The M42 aminopeptidases are genuine dinuclear enzymes degrading peptides up to 35 amino acid residues in length15. They adopt a peculiar tetrahedron-shaped structure made of 12 subunits with their active sites oriented towards an inner cavity. Such an arrangement is often described as a nano-compartmentalization of the activity to avoid uncontrolled proteolysis. The physiological function of the M42 aminopeptidases may be associated with the proteasome, hydrolyzing peptides resulting from protein degradation16,17. Pyrococcus horikoshii possesses four M42 aminopeptidases, each presenting distinct but complementary specificities18,19,20,21. Singularly, heterocomplexes made of two different types of subunits have been described in P. horikoshii, suggesting the existence of peptidasome complexes22,23.
Several structures of M42 aminopeptidases have been described in the literature11,16,18,19,20,24,25,26. The subunit is composed of two distinct domains, a catalytic domain and a dimerization domain. The catalytic domain adopts a common α/β fold conserved in the whole MH clan, the archetypal catalytic domain being the aminopeptidase Ap1 of Vibrio proteolyticus27. The dimerization domain adopts a PDZ-like fold16 and may have, in addition to its role in the oligomerization, a role in controlling substrate access and binding in the inner cavity11. As the basic building block is a dimer, the dodecamer is often described as the association of six dimers, each dimer being positioned at each edge of the tetrahedron16. The oligomerization of the M42 aminopeptidases relies on the availability of its metal cofactors. Divalent metal ions, often Zn2+ and Co2+, are catalytically involved in the peptide binding and hydrolysis. They are found in two distinct binding sites, namely M1 and M2 sites. The two metal ions also drive and finely tune the oligomerization as demonstrated for PhTET2, PhTET3, PfTET3, and TmPep105011,24,28,29. When the metal cofactors are depleted, the dodecamer disassembles into dimers, like in PhTET2, PhTET3, and TmPep105011,16,28, or even monomers, like in PhTET2 and PfTET324,29.
Presented here is a protocol used for studying the structures of TmPep1050 oligomers. This protocol is a set of common methods including protein purification, proteolytic activity screening, crystallization, X-ray diffraction, and molecular replacement. Subtleties inherent to dealing with metalloenzymes, protein oligomerization, protein crystallization and molecular replacement are emphasized. A case of study is also presented to show whether TmPep1050 dodecamers may further dissociate into monomers or not. To address this question, a TmPep1050 variant, TmPep1050H60A H307A, has been studied whose metal binding sites are impaired by mutating His-60 (M2 site) and His-307 (M1 site) to Ala residues. This protocol may be accommodated to study other M42 aminopeptidases or any metalloenzymes with morpheein-like behavior.
1. Production and purification of recombinant TmPep1050
NOTE: Hereafter are described the cloning procedure and purification of wild-type TmPep1050 adapted from a previous study11. Alternatively, the cloning can be done using a synthetic gene. To generate TmPep1050 variants, site directed mutagenesis can be performed following, for instance, the single-primer reactions in parallel protocol (SPRINP) method30. The purification protocol can be used for TmPep1050 variants. The use of His-tag should be avoided as it interferes with metal ion binding.
2. Activity assay and apo-enzyme preparation
NOTE: Originally, the apo-enzyme was prepared by diluting 1 volume of TmPep1050 in 10 volumes of 2.1 M malic acid pH 7.0 and concentrating back to 1 volume prior to dialysis11. Below is presented an alternative procedure using 1,10-phenanthroline, a metal ion chelator. This procedure reduces protein loss and gives the same results than the previously published method.
3. TmPep1050 crystallization
NOTE: Protein crystallization remains an empirical science as it is a multifactorial phenomenon33. While some parameters can be identified and controlled (such as temperature, pH, precipitation agent concentration), others may influence elusively the crystallization (such as protein and chemical purity, proteolysis, sample history). Nowadays protein crystallization is tackled in a rational and systematic manner thanks to a bunch of commercial crystallization screening conditions and automation. The optimization of a crystallization condition, however, relies mostly on a trial-and-error approach. Hereafter are described a blueprint for crystallizing proteins and several tips for optimizing the crystallization conditions.
4. X-ray diffraction
5. Indexation, molecular replacement and model building
To study a possible dodecamer dissociation into monomers in TmPep1050, the His-60 and His-307 codons were replaced by alanine codon using a synthetic gene. This gene was then cloned in pBAD vector for expression and purification of the corresponding TmPep1050 variant subsequently named TmPep1050H60A H307A. Size exclusion chromatography (Figure 3B) showed that the purified protein had an apparent molecular weight of 56 kDa (molecular weight of the monomer being 36.0 kDa). A similar apparent molecular weight, 52 kDa, has been reported for TmPep1050 dimer11. Hence, the oligomeric state of TmPep1050H60A H307A could be inferred as dimeric. Regarding its specific activity, TmPep1050H60A H307A was completely inactive on L-Leu-pNA as substrate, even in the presence of cobalt ions. This result strongly suggests that the variants cannot bind any metal ions.
The crystallization condition of TmPep1050H60A H307A was optimized by varying pH vs. PEG concentration (Figure 4) around the condition of the dimer (i.e., 0.1 M sodium citrate pH 6.0 10% PEG3350). The best crystals of TmPep1050H60A H307A were obtained in 0.1 M sodium citrate pH 5.2 20% PEG3350 with one cycle of microseeding for improving monocrystallinity. A complete data set was collected at Proxima 2 beamline (SOLEIL synchrotron) at a resolution 2.36 Å (Table 1). Data indexation showed that the space group of the TmPep1050H60A H307A crystal is C2221 but XDS proposed another solution, the mP space group (see Figure 5). According to Pointless, the likelihood of C2221 and P21 space groups were 0.711 and 0.149, respectively. According to the data quality analysis, two monomers are found in the asymmetric unit. The analysis by Xtriage revealed that the data set is probably twinned but twinning in C2221 space group is unlikely52. Twinning results from crystal growth anomaly where several definite domains have some of their lattice directions parallel to each other53. Twinning may also result from a higher crystal symmetry, indicating an erroneous data indexation. Hence, a pseudo-merohedral twin may exist so that a P21 crystal lattice looks like a C2221. The data set was subsequently indexed in space group P21 and tested in molecular replacement. Xtriage analysis of the data set indexed in P21 revealed a pseudo-merohedral twin following a twin law h, -k, -h-l.
Using the coordinates of a monomer from dodecameric TmPep1050 (PDB code 4P6Y), a molecular replacement solution was found for the data set indexed in P21 only, with a TFZ score of 28.9. Therefore, the diffraction data were treated as a twinned data set for model building. To minimize the bias of molecular replacement, a first model was built by using phenix.autobuild54,55. The structure of TmPep1050H60A H307A was completed after several cycles of automated and manual refinement in Phenix and Coot (Table 1 and Figure 6A). The structure confirmed the oligomeric state with an interface surface of 1,710 Å2 between both monomers and a ΔiG of -16.2 kcal mol-1 as calculated by PDBe Pisa56. In comparison, the interface surface and ΔiG of dimeric TmPep10502-mer is 1,673 Å2 and -16.7 kcal mol-1, respectively.
The structure of TmPep1050H60A H307A is highly similar to the wild-type dimer structure with RMS of 0.774 Å upon alignment. Importantly, the same structural modifications are observed in both structure: high flexibility of the α8 and α10 helices, disordered active site Gln-196–Val-202, and the displacement of Lys-229–Ala-235 and Lys-247–Ser 254. These modifications were correlated previously with the hindrance of dodecamer formation in absence of its metal cofactor11. The two mutations of His-60 and His-307, however, had a slight effect on the side chains of Asp-168 and Asp-62. They appeared to be locked in a conformation different from the wild-type dimer (Figure 6B). The Asp-168 carboxylate is rotated by 40° due to the absence of His-60 and His-307. Hence both histidine residues are important for positioning the Asp-168 carboxylate correctly for bridging the two metal ions. The Asp-62 side chain is oriented towards Glu-18 carboxylate, outside the catalytic site. Asp-62 may have an important role in catalysis as it is assumed to modulate the pKa of His-60 and, thus, influence metal ion binding in the M2 site. In addition, it could be implicated structurally in the stabilization of the catalytic site upon metal ion binding, favoring the formation of the dodecamer.
Figure 1: Schematic representation of TM_1050 ORF cloning into pBAD vector by homologous recombination.
The ORF is flanked by two 30 bp sequences homologous to the promoter BAD end and the sequence upstream PmeI restriction site. Please click here to view a larger version of this figure.
Figure 2: Chromatograms of TmPep1050 purification.
(A) Anion exchange chromatography. (B) Hydrophobic interaction chromatography. The absorbance (Abs), expressed in milliunits of absorbance (mUA), is shown in plain line. The conductivity, expressed in mS cm-1, is shown in dashed line. The grey box indicates where TmPep1050 eluates on the chromatograms. Please click here to view a larger version of this figure.
Figure 3: Size exclusion chromatography of (A) TmPep1050 dodecamer, (B) TmPep1050H60A H307A, and (C) TmPep1050H60A.
Samples were analyzed using SEC resin packed in a 120 mL column. Absorbance (Abs) is expressed in milliunits of absorbance (mUA). (D) Calibration of the SEC column using thyroglobulin (T), ferritin (F), aldolase (Ald), conalbumin (C), and albumin (Alb) as standards. The correlation between the logarithm of the relative mass and the elution volume is linear, with a R2 of 0.91. The 95% confidence intervals are represented as dots. Please click here to view a larger version of this figure.
Figure 4: Optimization of TmPep1050H60A H307A crystallization.
(A) The first optimization strategy consists of varying pH (between 4.5 and 6.0) vs. PEG3350 concentration (between 5% and 25%). The crystallization plate is schematized, and the wells are color coded: red for precipitate, yellow for polycrystals, and green for monocrystals. (B) The second optimization strategy includes the use of seeds diluted 25x with a narrower variation of pH vs. PEG3350. (C) Crystal shape and size before (upper image) and after (lower image) crystallization optimization and microseeding. Please click here to view a larger version of this figure.
Figure 5: Excerpts from the log output CORRECT.LP of TmPep1050H60A H307A data indexation by XDS.
Upper panel, the possible Bravais lattices, the most likely being mC, mP, and oC. Middle panel, overall statistics of data indexed in C2221 space group. Lower panel, overall statistics of data indexed in P21 space group. Please click here to view a larger version of this figure.
Figure 6: Structure of TmPep1050H60A H307A.
(A) Structural alignment of a TmPep1050H60A H307A subunit (red, PDB code 5NE9) vs. a dodecamer subunit (white, PDB code 6NW5) and a dimer subunit (blue, PDB code 5NE6). Arrows indicate the structural dissimilarities between dodecamers and dimers. (B) Close-up of the TmPep1050H60A H307A active site (red) compared to the active site of TmPep1050 dimer (blue) and dodecamer (white). Please click here to view a larger version of this figure.
TmPep1050H60A H307A | |
Data collection | |
Temperature (K) | 100 |
Radiation source | SOLEIL Proxima 2 |
Wavelength (Å) | 0.9801 |
Detector | Dectris Eiger X 9M |
Oscillation range (°) | 0.1 |
Exposure time (s) | 0.025 |
Space group | P 1 21 1 |
Unit cell parameters | |
α, β, γ (°) | 90.00, 110.69, 90.00 |
a, b, c (Å) | 43.24, 137.79, 61.11 |
Resolution | 43.99 – 2.37 (2.52-2.37) |
Unique reflections | 26.902 |
Rmerge (%) | 0.14 |
Redundancy | 6,815 |
<I/σ> | 8.64 (2.12) |
Completeness (%) | 99.6 (97.9) |
CC1/2 (%) | 99.2 (84.1) |
Refinement | |
Resolution | 43.99 – 2.37 |
Reflections | 26.9 |
Rfree set test count | 1345 |
Rwork/Rfree | 0.206/0.234 |
Protein molecules per ASU | 2 |
VM (Å3/Da) | 2.37 |
Solvent content (%) | 49.0 |
Protein/solvent atoms | 4,559/96 |
r.m.s.d. bond lengths (Å) | 0.31 |
r.m.s.d. bond angles (°) | 0.51 |
Average B-factors (Å2) | 57.0 |
Favored/disallowed Ramachandran φ/ψ (%) | 95.02 / 0.17 |
Twin law | h, -k, -h-l |
PDB code | 5NE9 |
Table 1: Data collection and refinement statistics. Values in parentheses are for the highest-resolution shell.
The protocol described herein allows understanding the dimer-dodecamer transition of TmPep1050 at the structural level. The methodology was experienced previously for determining the structure of both TmPep1050 oligomers11. The most challenging step was to find conditions promoting the dissociation of dodecamers into stable dimers. Such conditions had to be mild enough to permit the reassociation of dimers into dodecamers when the metal ion cofactor was added. The separation of oligomers was also a critical step as it conditions the structural studies and further biochemical characterization (e.g., studying the dodecamer reassociation in various doses of Co2+). The molecular replacement, a proven method for phase determination, was used to solve the structures of TmPep1050 oligomers and its variants. The proposed protocol may be adapted to study other metallo-enzymes whose oligomerization states depend on the availability of their metal cofactors.
To illustrate the protocol, a case of study was presented, TmPep1050H60A H307A whose metal binding sites were impaired by mutating His-60 and His-307 to alanine. These residues bind Co2+ at the M2 and M1 sites, respectively. Interfering in metal binding could have perturbed the oligomerization state and led to a complete dissociation into monomers. Evidences of such a phenomenon have been reported for PhTET2 and PfTET3, two M42 aminopeptidases from P. horikoshii and P. furiosus, respectively24,29. TmPep1050H60A H307A did not behave as expected as this variant formed dimers only. Its structure showed the same modifications as the wild-type dimer but with two small exceptions. Indeed, the side chains of Asp-168 and Asp-62 appeared to be locked in an unconventional orientation preventing the stabilization of the active site. Their orientation seemed to be imposed by His-60 and His-307 as such modifications were not observed in the single point mutation variants.
The authors have nothing to disclose.
We thank Martine Roovers for proofreading this paper and giving constructive comments. Access to Proxima 2 beamline (SOLEIL synchrotron) was within Block Allocation Groups 20151139.
1,10-phenanthroline | Sigma-Aldrich | 13, 137-7 | |
Amicon Ultra 0.5 ml Centrifugal Filters Ultracel 30K | Merck Millipore | UFC503096 | |
Amicon Ultra 15 Centrifugal Filters Ultracel 30K | Merck Millipore | UFC903024 | |
Benzonase Nuclease | Merck Millipore | 70664-3 | |
CCP4 | N/A | visit http://www.ccp4.ac.uk/ | |
cOmplete EDTA-free | Roche | 5056489001 | |
Coot | N/A | visit https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/ | |
Crystal Screen I | Hampton Research | HR2-110 | |
Crystal Screen II | Hampton Research | HR2-112 | |
DreamTaq Green PCR Master Mix | ThermoFisher Scientific | K1082 | |
EasyXtal 15-well tool | NeXtal | 132007 | |
Escherichia coli PPY strain | N/A | see reference 31 | |
Escherichia coli XL1 blue strain | Agilent | 200249 | |
Gel Filtration Calibration Kit HMW | GE Healthcare Life Sciences | 28-4038-42 | |
Gel Filtration Calibration Kit LMW | GE Healthcare Life Sciences | 28-4038-41 | |
Gel Filtration Standard | Biorad | 1511901 | |
GeneJET Plasmid Miniprep Kit | ThermoFisher Scientific | K0503 | |
Index | Hampton Research | HR2-144 | |
Litholoops | Molecular Dimensions | ||
L-leucine-p-nitroanilide | Bachem AG | 40010720025 | |
Natrix 1 | Hampton Research | HR2-116 | |
Natrix 2 | Hampton Research | HR2-117 | |
Neggia plugin | Dectris | N/A | visit https://www.dectris.com/ |
NeXtal Tubes JCSG Core Suite I | NeXtal | 130724 | |
NeXtal Tubes JCSG Core Suite II | NeXtal | 130725 | |
NeXtal Tubes JCSG Core Suite III | NeXtal | 130726 | |
NeXtal Tubes JCSG Core Suite IV | NeXtal | 130727 | |
pBAD-TOPO | ThermoFisher Scientific | K430001 | |
Phenix | N/A | visit https://www.phenix-online.org/ | |
Phusion High-Fidelity DNA polymerase | ThermoFisher Scientific | F-530L | |
Salt RX 1 | Hampton Research | HR2-107 | |
Salt RX 2 | Hampton Research | HR2-109 | |
SnakeSkin Dialysis Tubing, 3.5K MWCO | ThermoFisher Scientific | 88242 | |
Source 15Phe | GE Healthcare Life Sciences | 17014702 | |
Source 15Q | GE Healthcare Life Sciences | 17094705 | |
Superdex 200 prep grade | GE Healthcare Life Sciences | 17104301 | |
Thermotoga maritima MSB8 strain | American Type Culture Collection | ATCC 43589 | |
TmCD00089984 | DNASU Plasmid Repository | N/A | |
XDS | N/A | visit http://xds.mpimf-heidelberg.mpg.de/ | |
xdsme | N/A | visit https://github.com/legrandp/xdsme |