El objetivo de esta técnica es la visualización ex vivo de redes arteriales pulmonares de ratones postnatales y adultos tempranos a través de la inflación pulmonar y la inyección de un compuesto radioopaco a base de polímeros a través de la arteria pulmonar. También se discuten las posibles aplicaciones para los tejidos fundidos.
Los vasos sanguíneos forman redes intrincadas en el espacio tridimensional. Por lo tanto, es difícil apreciar visualmente cómo interactúan y se comportan las redes vasculares observando la superficie de un tejido. Este método proporciona un medio para visualizar la compleja arquitectura vascular tridimensional del pulmón.
Para lograr esto, se inserta un catéter en la arteria pulmonar y la vasculatura se enjuaga simultáneamente de sangre y se dilata químicamente para limitar la resistencia. Los pulmones se inflan a través de la tráquea a una presión estándar y el compuesto del polímero se infunde en el lecho vascular a un caudal estándar. Una vez que toda la red arterial se llena y se le permite curar, la vasculatura pulmonar puede visualizarse directamente o ser imagen en un escáner de micro-CT .
Cuando se realiza con éxito, se puede apreciar la red arterial pulmonar en ratones que van desde edades posnatales tempranas hasta adultos. Además, mientras se demuestra en el lecho arterial pulmonar, este método se puede aplicar a cualquier lecho vascular con la colocación optimizada del catéter y puntos finales.
El enfoque de esta técnica es la visualización de la arquitectura arterial pulmonar utilizando un compuesto a base de polímeros en ratones. Si bien se ha realizado un trabajo extenso en lechos vasculares sistémicos como el cerebro, el corazón y los riñones1,2,3,4,5, se dispone de menos información sobre la preparación y llenado de la red arterial pulmonar. El objetivo de este estudio, por lo tanto, es ampliar el trabajo anterior6,7,8 y proporcionar una referencia detallada escrita y visual que los investigadores pueden seguir fácilmente para producir imágenes de alta resolución del árbol arterial pulmonar.
Si bien existen numerosos métodos para etiquetar y tomar imágenes de vasculatura pulmonar, como la resonancia magnética, la ecocardiografía o la angiografía por TC9,10, muchas de estas modalidades no logran llenar y/o capturar adecuadamente los vasos pequeños, lo que limita el alcance de lo que se puede estudiar. Métodos tales como sección en serie y reconstrucción proporcionan alta resolución, pero son intensivos en tiempo/trabajo11,12,13. La integridad de los tejidos blandos circundantes se ve comprometida en la fundición de corrosión tradicional10,13,14,15,16. Incluso la edad y el tamaño de los animales se convierten en factores al intentar introducir un catéter o, la resolución es deficiente. La técnica de inyección de polímero, por otro lado, llena las arterias al nivel capilar y cuando se combina con el TCT, permite una resolución sin igual5. Las muestras de los pulmones de ratón tan jóvenes como el día 14 postnatal se han echado con éxito8 y se han procesado en cuestión de horas. Estos pueden ser reencaneados indefinidamente, o incluso enviados para preparación histológica / microscopía electrónica (EM) sin comprometer el tejido blando existente17. Las principales limitaciones de este método son el costo inicial de los equipos/software de TC, los desafíos con el monitoreo preciso de la presión intravascular y la incapacidad de adquirir datos longitudinalmente en el mismo animal.
Este documento se basa en el trabajo existente para optimizar aún más la técnica de inyección de la arteria pulmonar y empujar los límites relacionados con la edad/tamaño hasta el día posnatal 1 (P1) para producir resultados sorprendentes. Es más útil para los equipos que quieren estudiar redes vasculares arteriales. En consecuencia, proporcionamos nuevas directrices para la colocación/estabilización del catéter, un mayor control sobre la tasa de llenado/volumen y destacamos los notables escollos para un mayor éxito de fundición. Los moldes resultantes se pueden utilizar para futuras caracterizaciones y análisis morfológicos. Tal vez lo más importante, esta es la primera demostración visual, a nuestro conocimiento, que guía al usuario a través de este intrincado procedimiento.
Ejecutado correctamente, este método produce imágenes impactantes de redes arteriales pulmonares, lo que permite la comparación y experimentación en modelos de roedores. Varios pasos críticos en el camino aseguran el éxito. En primer lugar, los investigadores deben heparinizar al animal en la etapa preparatoria para evitar que se formen coágulos de sangre en la vasculatura pulmonar y las cámaras del corazón. Esto permite el tránsito arterial completo del compuesto de polímero. En segundo lugar, al perforar el …
The authors have nothing to disclose.
Esta investigación fue apoyada en parte por el Programa de Investigación Intramuros NHLBI (DIR HL-006247). Nos gustaría dar las gracias a NIH Mouse Imaging Facility por orientación en la adquisición y análisis de imágenes.
1cc syringe | Becton Dickinson | 309659 | |
20ml Glass Scintillation Vials | Fisher | 03-340-25P | |
30G Needle | Becton Dickinson | 305106 | |
50mL conical tubes | Cornin | 352098 | For sample Storage and scanning |
60cc syringe | Becton Dickinson | 309653 | |
7-0 silk suture | Teleflex | 103-S | |
Analyze 12.0 Software | AnalyzeDirect Inc. | N/A | Primary Software |
Amira 6.7 Software | Thermo Scientific | N/A | Alternative Sofware |
CeramaCut Scissors 9cm | Fine Science tools | 14958-09 | |
Ceramic Coated Curved Forceps | Fine Science tools | 11272-50 | |
CO2 Tank | Robert's Oxygen Co. | n/a | |
Dual syringe pump | Cole Parmer | EW-74900-10 | |
Dumont Mini-Forceps | Fine Science tools | 11200-14 | |
Ethanol | Pharmco | 111000200 | |
Formalin | Sigma – Life Sciences | HT501128 | |
Gauze | Covidien | 441215 | |
Hemostat | Fine Science tools | 13013-14 | |
Heparin (1000USP Units/ml) | Hospira | NDC 0409-2720-01 | |
Horos Software | Horos Project | N/A | Alternative Sofware |
induction chamber | n/a | n/a | |
Kimwipe | Fisher | 06-666 | fiber optic cleaning wipe |
Labelling Tape | Fisher | 15966 | |
Magnetic Base | Kanetec | N/A | |
Micro-CT system | SkyScan | 1172 | |
Microfil (Polymer Compound) | Flowech Inc. | Kit B – MV-122 | 8 oz. of MV compound; 8 oz. of diluent; MV-Curing Agent |
Micromanipulator | Stoelting | 56131 | |
Monoject 1/2 ml Insulin Syringe | Covidien | 1188528012 | |
Octagon Forceps Straight Teeth | Fine Science tools | 11042-08 | |
Parafilm | Bemis company, Inc. | #PM999 | |
PE-10 tubing | Instech | BTPE-10 | |
Phospahte buffered Saline | BioRad | #161-0780 | |
Ring Stand | Fisher | S13747 | Height 24in. |
Sodium Nitroprusside | sigma | 71778-25G | |
Steel Plate | N/A | N/A | 16 x 16 in. area, 1/16 in thick |
Straight Spring Scissors | Fine Science tools | 15000-08 | |
SURFLO 24G Teflon I.V. Catheter | Santa Cruz Biotechnology | 360103 | |
Surgical Board | Fisher | 12-587-20 | This is a converted slide holder |
Universal 3-prong clamp | Fisher | S24280 | |
Winged Inf. Set 25X3/4, 12" Tubing | Nipro | PR25G19 | |
Zeiss Stemi-508 Dissection Scope | Zeiss | n/a |