Summary

Elimination of Serotonergic Neurons by Stereotaxic Injection of 5,7-Dihydroxytryptamine in the Dorsal Raphe Nuclei of Mice

Published: May 01, 2020
doi:

Summary

This protocol describes a dorsal raphe nucleus (DRN)-lesioned mouse model (>90% survival rate in experimental mice) with stable loss of dorsal raphe serotonergic neurons by stereotaxic injection of 5,7-dihydroxytryptamine into the DRN using an angled approach to prevent injury to the superior sagittal sinus.

Abstract

Stereotaxic injection has been widely used for direct delivery of compounds or viruses to targeted brain areas in rodents. Direct targeting of serotonergic neurons in the dorsal raphe nucleus (DRN) can cause excessive bleeding and animal death, due to its location below the superior sagittal sinus (SSS). This protocol describes the generation of a DRN serotonergic neuron-lesioned mouse model (>90% survival rate) with stable loss of >70% 5-HT-positive cells in the DRN. The lesion is induced by stereotaxic injection of a selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the DRN using an angled approach (30° in the anterior/posterior direction) to avoid injury to the SSS. DRN serotonergic neuron-lesioned mice display anxiety-associated behavior alterations, which helps to confirm success of the DRN lesion surgery. This method is used here for DRN lesions, but it can also be used for other stereotaxic injections that require angular injections to avoid midline structures. This DRN serotonergic neuron-lesioned mouse model provides a valuable tool for understanding the role of serotonergic neurons in the pathogenesis of psychiatric disorders, such as generalized anxiety disorder and major depressive disorder.

Introduction

Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter mainly produced in the intestines and brain and impacts a variety of psychological functions. In the central nervous system (CNS), the serotonergic system plays a central role in the regulation of mood and social behavior, sleep and waking, appetite, memory, and sexual desire. In the CNS, serotonin is synthesized by serotonergic neurons, which can be separated into the following two groups: the rostral group, which has ascending projections innervating virtually the whole brain; and the caudal group, which mainly projects to the spinal cord1. The rostral group, which contains about 85% of serotonergic neurons in the brain, is composed of the caudal linear nucleus, median raphe nucleus, and DRN, in which the largest population of serotonergic neurons in the brain is located.

Dysregulation of the serotonergic system is generally believed to be linked with the pathogenesis of major depressive disorder (MDD) and generalized anxiety disorders (GAD)2. This is due to the fact that selective serotonin reuptake inhibitors (SSRIs) are effective pharmacological treatment for these psychiatric disorders3,4. In addition, accumulative evidences suggest that mania5 and suicidal behavior6 may be associated with lower levels of serotonin functioning in the DRN. It has also been reported that Pet1-Cre;Lmx1bflox/flox mice and hTM-DTAiPet1 mice (genetic mouse models lacking most central serotonergic neurons from late embryonic stage7 and adulthood8, respectively) display enhanced contextual fear memory. However, despite extensive research, the exact involvement of DRN serotonergic neurons in these psychiatric disorders remains to be elucidated.

In order to explore the mechanisms by which DRN serotonergic neurons regulate the pathogenesis of the serotonin-associated psychiatric disorders, animal models have been generated. Optogenetic tools have been applied to inhibit serotonergic neurons in rat DRN, and these animals display increased anxiety-like behaviors9. However, optogenetics has limitations. For example, a light-delivery device must be implanted into the targeted region deep within the brain, and the surrounding tissue may be injured during implantation surgery or by heat emitted from the light device. Even if temperature alteration may not cause detectable brain tissue damage, it can still induce remarkable physiological and behavioral effects10.

Pharmacological manipulation may be an easier approach to create DRN serotonergic neuron-lesioned animal models. Some groups have generated DRN serotonergic neuron-lesioned rats by stereotaxic microinjection of serotonin neurotoxin 5,7-DHT in the DRN. However, these rat models display different behavioral alterations, such as anxiolytic behavior11, increased anxiety-like behavior12, and impaired object memory13. Despite many studies in rats, fewer studies have been performed on the influences of 5,7-DHT on mice. One group reported excessive mortality (>50%) and limited serotonin depletion in experimental mice that received stereotaxic microinjections of 5,7-DHT in the DRN14. Another group reported that unpredictable chronic mild stress (UCMS) can induce significant attack latency alteration in 5,7-DHT-induced DRN-lesioned mice. However, no histological results were provided to confirm the exact serotonergic neuron loss in the DRN15. Stereotaxic injection in the DRN using standard procedures may lead to massive bleeding and high mortality to mice, given the fact that the anatomical location of DRN is below the SSS16.

This protocol describes the protocol to generate a DRN serotonergic neuron-lesioned mouse model (>90% survival rate of the experimental mice) with stable loss of DRN serotonergic neurons by stereotaxic injection of 5,7-DHT. The injection in DRN uses an angled approach to prevent the injury to the SSS. This surgery consistently causes >70% loss of serotonergic neuron in the DRN of mice, and it produces anxiety-associated behavior alterations. The protocol used here is for inducing DRN lesions, but it can also be useful to researchers who want to perform stereotaxic injections in other midline structures. In addition, this DRN serotonergic neuron-lesioned mouse model provides a valuable tool for understanding the role of serotonergic neurons in psychiatric disorders (i.e., MDD and GAD) and assessing potential neuroprotective agents or therapeutic strategies for these conditions.

Protocol

All surgical interventions and animal care procedures have been approved by the Animal Committee of School of Life Sciences and Technology, Tongji University, Shanghai, China. 1. Housing of animals Maintain male C57BL/6NCrl mice (10 weeks old, 25 g, n = 21) in standard conditions (24 °C temperature; 55% humidity) under a 12 h/12 h light/dark cycle. Provide food and water ad libitum. NOTE: Here, three of the mice are used for confirming the needle trac…

Representative Results

In a coronal section, the location of the DRN is just below the SSS and aqueduct (Figure 1B,C); thus, targeting the DRN using standard procedures can lead to massive bleeding and high mortality in mice16. Therefore, stereotaxic injections were performed here using an angled approach instead of the standard vertical approach to avoid damage to the SSS (Figure 1A,B). To confirm the location of the needle en…

Discussion

This protocol successfully describes production of a reliable DRN serotonergic neuron-lesioned mouse model with high lesion reproducibility and low mortality rate. Targeting the DRN is a complex task, since it can damage the SSS located just above the DRN16 and lead to excessive bleeding and even death14. Therefore, stereotaxic injections were performed by setting the manipulation arm at 30° in the AP direction to avoid injury to the SSS (Figure 1<…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Key Research and Development Program of China [Grant numbers 2017YFA0104100]; the National Natural Science Foundation of China [Grant numbers 31771644, 81801331 and 31930068]; and the Fundamental Research Funds for the Central Universities.

Materials

0.22micron syringe filter Millipore SLGPRB
3% hydrogen peroxide Caoshanhu Co.,Ltd, Jiangxi, China
5,7-Dihydroxytryptamine Sigma-Aldrich SML2058 3ug/ul, 2ul
Compact small animal anesthesia machine RWD Life Science Co., Ltd R500 series
Cryostat Leica Biosystems, Wetzlar, Germany CM1950
Cy 3 AffiniPure Donkey Anti-Goat IgG (H+L) Jackson ImmunoResearch 705-165-003 1:2,000
dapi Sigma-Aldrich D8417
desipramine hydrochloride Sigma-Aldrich PHR1723 25mg/kg
Eppendorf tube Quality Scientific Plastics 509-GRD-Q
goat anti-5-HT antibody Abcam ab66047 1:800
GraphPad Prism Graphpad Software Inc, CA, US
Hamilton Microliter syringe Hamilton 87943
Ketoprofen Sigma-Aldrich K1751-1G 5mg/kg
L-ascorbic acid BBI Life Sciences A610021-0500 0.10%
lidocaine ointment Tsinghua Tongfang Pharmaceutical Co. Ltd H20063466
ofloxacin eye ointment Shenyang Xingqi Pharmaceutical Co.Ltd, China H10940177
peristaltic pump Huxi Analytical Instrument Factory Co., Ltd, Shanghai, China HL-1D
stereotaxic apparatus RWD Life Science Co., Ltd 68018
ultra-low temperature freezer Haier DW-86L388
Vortex Kylin-bell VORTEX-5

Riferimenti

  1. Goridis, C., Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nature Review Neurosciences. 3 (7), 531-541 (2002).
  2. Zmudzka, E., Salaciak, K., Sapa, J., Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Science. 210, 106-124 (2018).
  3. Sanchez, C., Asin, K. E., Artigas, F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacology and Therapeutics. 145, 43-57 (2015).
  4. Pae, C. U., et al. Vortioxetine, a multimodal antidepressant for generalized anxiety disorder: a systematic review and meta-analysis. Journal of Psychiatric Research. 64, 88-98 (2015).
  5. Howerton, A. R., Roland, A. V., Bale, T. L. Dorsal raphe neuroinflammation promotes dramatic behavioral stress dysregulation. Journal of Neuroscience. 34 (21), 7113-7123 (2014).
  6. Matthews, P. R., Harrison, P. J. A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. Journal of Affective Disorders. 137 (1-3), 125-134 (2012).
  7. Dai, J. X., et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proceedings of the National Academy of Science USA. 105 (33), 11981-11986 (2008).
  8. Song, N. N., et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Science Reports. 6, 20338 (2016).
  9. Nishitani, N., et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology. 44 (4), 721-732 (2019).
  10. Long, M. A., Fee, M. S. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature. 456 (7219), 189-194 (2008).
  11. Sena, L. M., et al. The dorsal raphe nucleus exerts opposed control on generalized anxiety and panic-related defensive responses in rats. Behavioral Brain Research. 142 (1-2), 125-133 (2003).
  12. Hall, F. S., Devries, A. C., Fong, G. W., Huang, S., Pert, A. Effects of 5,7-dihydroxytryptamine depletion of tissue serotonin levels on extracellular serotonin in the striatum assessed with in vivo microdialysis: relationship to behavior. Synapse. 33 (1), 16-25 (1999).
  13. Lieben, C. K., Steinbusch, H. W., Blokland, A. 5,7-DHT lesion of the dorsal raphe nuclei impairs object recognition but not affective behavior and corticosterone response to stressor in the rat. Behavioral Brain Research. 168 (2), 197-207 (2006).
  14. Martin, S., van den Buuse, M. Phencyclidine-induced locomotor hyperactivity is enhanced in mice after stereotaxic brain serotonin depletion. Behavioral Brain Research. 191 (2), 289-293 (2008).
  15. Yalcin, I., Coubard, S., Bodard, S., Chalon, S., Belzung, C. Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on the antidepressant-like action of tramadol in the unpredictable chronic mild stress in mice. Psychopharmacology (Berlin). 200 (4), 497-507 (2008).
  16. Xiong, B., et al. Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain. Frontiers in Neuroanatomy. 11, 128 (2017).
  17. Spofford, C. M., et al. Ketoprofen produces modality-specific inhibition of pain behaviors in rats after plantar incision. Anesthesia and Analgesia. 109 (6), 1992-1999 (2009).
  18. Baumgarten, H. G., Klemm, H. P., Sievers, J., Schlossberger, H. G. Dihydroxytryptamines as tools to study the neurobiology of serotonin. Brain Research Bulletin. 9 (1-6), 131-150 (1982).
  19. Graeff, F. G., Netto, C. F., Zangrossi, H. The elevated T-maze as an experimental model of anxiety. Neuroscience and Biobehavioral Reviews. 23 (2), 237-246 (1998).
  20. Lister, R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berlin). 92 (2), 180-185 (1987).
  21. Lu, J., et al. Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Reports. 3 (5), 1580-1591 (2013).
  22. Cao, L., et al. Characterization of Induced Pluripotent Stem Cell-derived Human Serotonergic Neurons. Frontiers in Cellular Neuroscience. 11, 131 (2017).
  23. Sinhababu, A. K., Borchardt, R. T. Molecular mechanism of biological action of the serotonergic neurotoxin 5,7-dihydroxytryptamine. Neurochemistry International. 12 (3), 273-284 (1988).
  24. Jia, Y. F., et al. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells. Frontiers in Behavioral Neuroscience. 8, 325 (2014).
  25. Marcinkiewcz, C. A., et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 537 (7618), 97-101 (2016).
  26. Ohmura, Y., Tanaka, K. F., Tsunematsu, T., Yamanaka, A., Yoshioka, M. Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. International Journal of Neuropsychopharmacology. 17 (11), 1777-1783 (2014).
  27. Correia, P. A., et al. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife. 6, (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Citazione di questo articolo
Cao, L., Zhang, Z., Lu, X., Wang, G., Meng, D., Liu, C., Yun, J., Xu, T., Zhao, C., Lu, J. Elimination of Serotonergic Neurons by Stereotaxic Injection of 5,7-Dihydroxytryptamine in the Dorsal Raphe Nuclei of Mice. J. Vis. Exp. (159), e60968, doi:10.3791/60968 (2020).

View Video