Ein detailliertes experimentelles Protokoll wird in diesem Beitrag zur Bewertung der neurobehavioralen Toxizität von Umweltschadstoffen unter Verwendung eines Zebrafischlarvenmodells vorgestellt, einschließlich des Expositionsprozesses und Tests für neurobehaviorale Indikatoren.
In den letzten Jahren haben sich immer mehr Umweltschadstoffe als neurotoxisch erwiesen, vor allem in den frühen Entwicklungsstadien von Organismen. Zebrafischlarven sind ein herausragendes Modell für die neurobehaviorale Untersuchung von Umweltschadstoffen. Hier wird ein detailliertes Versuchsprotokoll für die Bewertung der Neurotoxizität von Umweltschadstoffen mit Zebrafischlarven, einschließlich der Entnahme der Embryonen, des Expositionsprozesses, neurobehavioraler Indikatoren, des Testprozesses und Datenanalyse. Außerdem werden die Kulturumgebung, der Expositionsprozess und die experimentellen Bedingungen diskutiert, um den Erfolg des Assays sicherzustellen. Das Protokoll wurde bei der Entwicklung psychopathischer Medikamente, der Erforschung neurotoxischer Umweltschadstoffe, verwendet und kann optimiert werden, um entsprechende Studien zu erstellen oder für mechanistische Studien hilfreich zu sein. Das Protokoll zeigt einen klaren Operationsprozess zur Untersuchung neurobehavioraler Wirkungen auf Zebrafischlarven und kann die Auswirkungen verschiedener neurotoxischer Substanzen oder Schadstoffe aufzeigen.
In den letzten Jahren wurden immer mehr Umweltschadstoffe neurotoxisch1,2,3,4. Die Bewertung der Neurotoxizität in vivo nach Exposition gegenüber Umweltschadstoffen ist jedoch nicht so einfach wie die der endokrinen Störung oder der Entwicklungstoxizität. Darüber hinaus hat die frühzeitige Exposition gegenüber Schadstoffen, insbesondere in umweltrelevanten Dosen, in Toxizitätsstudien5,6,7,8zunehmend Aufmerksamkeit erregt.
Zebrafisch wird als Tiermodell etabliert, das für Neurotoxizitätsstudien während der frühen Entwicklung nach der Exposition gegenüber Umweltschadstoffen geeignet ist. Zebrafische sind Wirbeltiere, die sich nach der Befruchtung schneller entwickeln als andere Arten. Die Larven müssen nicht gefüttert werden, da die Nährstoffe im Chorion ausreichen, um sie für 7 Tage nach der Befruchtung zu erhalten (dpf)9. Larven kommen aus dem Chorion bei 2 dpf und entwickeln Verhaltensweisen wie Schwimmen und Drehen, die beobachtet, verfolgt, quantifiziert und automatisch mit Verhaltensinstrumenten10,11,12,13 ab 3-4 dpf14,15,16,17,18analysiert werden können. Darüber hinaus können Hochdurchsatztests auch durch Verhaltensinstrumente realisiert werden. So sind Zebrafischlarven ein herausragendes Modell für die neurobehaviorale Untersuchung von Umweltschadstoffen19. Hier wird ein Protokoll mit Hochdurchsatzüberwachung angeboten, um die neurobehaviorale Toxizität von Umweltschadstoffen auf Zebrafischlarven unter Lichtreizen zu untersuchen.
Unser Labor hat die neurobehaviorale Toxizität von 2,2′,4,4′-Tetrabromodiphenylether (BDE-47)20,21, 6′-Hydroxy/Methoxy-2,2′,4,4′-Tetrabromodiphenylether (6-OH/MeO-BDE-47)22, deca-bromiertes Diphenylether (BDE-209), Blei, und kommerziellen chlorierten Paraffinen23 unter Verwendung des vorgelegten Protokolls. Viele Labore verwenden auch das Protokoll, um die neurobehavioralen Auswirkungen anderer Schadstoffe auf Larven oder erwachsene Fische24,25,26,27zu untersuchen. Dieses neurobehaviorale Protokoll wurde verwendet, um mechanistische Unterstützung zu bieten, die zeigt, dass eine niedrig dosierte Exposition gegenüber Bisphenol A und Ersatzbisphenol S eine vorzeitige hypothalamische Neurogenese bei embryonalen Zebrafischeninduzierte 27. Darüber hinaus optimierten einige Forscher das Protokoll, um entsprechende Studien durchzuführen. Eine kürzlich durchgeführte Studie eliminierte die Toxizität von Amyloid-Beta (A) in einem einfachen Zebrafischmodell mit hohem Durchsatz mit Kasein-beschichteten Gold-Nanopartikeln ( Es zeigte sich, dass sich die “Cas AuNPs” in systemischer Zirkulation über die Blut-Hirn-Schranke von Zebrafischlarven translozierten und intracerebral A-42 beschlagnahmten, was Toxizität in einer unspezifischen, chaperonähnlichen Weise hervorrief, die durch die Verhaltenspathologie unterstützt wurde28.
Fortbewegung, Pfadwinkel und soziale Aktivität sind drei neurobehaviorale Indikatoren, die verwendet werden, um die neurotoxischen Auswirkungen von Zebrafischlarven nach der Exposition gegenüber Schadstoffen im vorgestellten Protokoll zu untersuchen. Die Fortbewegung wird anhand des Schwimmabstandes von Larven gemessen und kann nach der Exposition gegenüber Schadstoffen beschädigt werden. Pfadwinkel und soziale Aktivität sind enger mit der Funktion des Gehirns und des zentralen Nervensystems verbunden29. Der Pfadwinkel bezieht sich auf den Winkel des Pfades der Tierbewegung relativ zur Schwimmrichtung30. Im System werden acht Winkelklassen von -180°-+180° eingestellt. Um den Vergleich zu vereinfachen, werden sechs Klassen im Endergebnis definiert als Routinedrehungen (-10° – 0°, 0° + 10°), durchschnittliche Umdrehungen (-10° – 90°, +10° +90°) und reaktionsschnelle Drehungen (-180° – 90°, +90° + +180°) nach unseren vorherigen Studien21,22. Zwei-Fisch-Soziale Aktivität ist grundlegend für Gruppen-Shoaling-Verhalten; hier wird ein Abstand von < 0,5 cm zwischen zwei gültigen Larven als sozialer Kontakt definiert.
Das hier vorgestellte Protokoll zeigt einen klaren Prozess zur Untersuchung neurobehavioraler Wirkungen auf Zebrafischlarven und bietet eine Möglichkeit, die neurotoxischen Wirkungen verschiedener Substanzen oder Schadstoffe aufzudecken. Das Protokoll wird Forschern zugute kommen, die an der Untersuchung der Neurotoxizität von Umweltschadstoffen interessiert sind.
Diese Arbeit liefert ein detailliertes experimentelles Protokoll zur Bewertung der Neurotoxizität von Umweltschadstoffen unter Verwendung von Zebrafischlarven. Zebrafische durchlaufen den Prozess von Embryonen bis zu Larven während der Expositionsphase, was bedeutet, dass eine gute Versorgung der Embryonen und Larven unerlässlich ist. Alles, was die Entwicklung der Embryonen und Larven beeinflusst, kann das Endergebnis beeinflussen. Hier werden die Kulturumgebung, der Belichtungsprozess und die experimentellen Bedingu…
The authors have nothing to disclose.
Die Autoren sind dankbar für die finanzielle Unterstützung durch die National Natural Science Foundation of China (21876135 und 21876136), das National Major Science and Technology Project of China (2017ZX07502003-03, 2018ZX07701001-22), die Stiftung von MOE-Shanghai Key Laboratory of Children es Environmental Health (CEH201807-5) und Swedish Research Council (Nr. 639-2013-6913).
48-well-microplate | Corning | 3548 | Embyros housing |
6-well-microplate | Corning | 3471 | Embyros housing |
BDE-47 | AccuStandard | 5436-43-1 | Pollutant |
DMSO | Sigma | 67-68-5 | Cosolvent |
Microscope | Olympus | SZX 16 | Observation instrument |
Pipette | Eppendorf | 3120000267 | Transfer solution |
Zebrabox | Viewpoint | ZebraBox | Behavior instrument |
Zebrafish | Shanghai FishBio Co., Ltd. | Tubingen | Zebrafish supplier |
ZebraLab | Viewpoint | ZebraLab | Behavior software |