We describe the isolation, dispersion and plating of dental pulp (DP) primary cells with trigeminal (TG) neurons cultured atop overlying transwell filters. Cellular responses of DP cells can be analyzed with immunofluorescence or RNA/protein analysis. Immunofluorescence of neuronal markers with confocal microscopy permits the analysis of neurite outgrowth responses.
Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Without sensory innervation, daily oral activities would cause irreparable damage. Despite its importance, the roles of innervation in tooth development and maintenance have been largely overlooked. Several studies have demonstrated that DP cells secrete extracellular matrix proteins and paracrine signals to attract and guide TG axons into and throughout the tooth. However, few studies have provided detailed insight into the crosstalk between the DP mesenchyme and neuronal afferents. To address this gap in knowledge, researchers have begun to utilize co-cultures and a variety of techniques to investigate these interactions. Here, we demonstrate the multiple steps involved in co-culturing primary DP cells with TG neurons dispersed on an overlying transwell filter with large diameter pores to allow axonal growth through the pores. Primary DP cells with the gene of interest flanked by loxP sites were utilized to facilitate gene deletion using an Adenovirus-Cre-GFP recombinase system. Using TG neurons from the Thy1-YFP mouse allowed for precise afferent imaging, with expression well above background levels by confocal microscopy. The DP responses can be investigated via protein or RNA collection and analysis, or alternatively, through immunofluorescent staining of DP cells plated on removable glass coverslips. Media can be analyzed using techniques such as proteomic analyses, although this will require albumin depletion due to the presence of fetal bovine serum in the media. This protocol provides a simple method that can be manipulated to study the morphological, genetic, and cytoskeletal responses of TG neurons and DP cells in response to the controlled environment of a co-culture assay.
Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Failure to sense tooth pain associated with dental caries and trauma leads to disease progression. Thus, proper innervation is a requirement for normal tooth growth, function and care.
While most organs are fully functional and innervated by the time of birth, tooth development extends into adult life, with tooth innervation and mineralization occurring in concert during postnatal stages1,2. Interestingly, the dental pulp (DP) mesenchyme initially secretes repellant signals during embryogenesis to prevent axon entry into the developing tooth organ, which later shifts to the secretion of attractant factors as the tooth nears eruption3,4. During postnatal stages, afferent axons from the trigeminal (TG) nerve penetrate into and throughout the tooth around the time dentin deposition begins (reviewed in Pagella, P. et al.5). Several in vivo studies have demonstrated that neuronal-mesenchymal interactions guide tooth innervation in mice (reviewed in Luukko, K. et al.6), but few details of the molecular mechanisms are available.
Cell co-cultures provide controlled environments in which investigators can manipulate interactions between neuronal and mesenchymal populations. Co-culture experiments make it possible to delve deeper into the signaling pathways guiding tooth innervation and development. However, several of the conventional methods used to study cells in co-culture present technical challenges. For instance, crystal violet staining of neurite outgrowth can non-specifically stain Schwann cells included in TG bundle dispersions, and there may be peaks in color intensity with relatively small responses7. Microfluidic chambers offer an attractive option, but are considerably more expensive than transwell filters8,9 and only permit the investigation of neuronal responses to DP secretions. To address these issues, we have developed a protocol that allows for: a) precise staining and imaging of TG neurite outgrowth in response to DP secretions, b) genetic modification of DP cells and/or TG neurons to investigate specific signaling pathways, and c) investigation of DP cell responses to factors secreted by TG neurons. This protocol provides the ability to precisely investigate several features of tooth innervation in the controlled environment of an in vitro co-culture assay.
All experiments with mice were approved by the UAB Institutional Animal Care and Use Committee (IACUC).
1. Plate Preparation
NOTE: Coverslips can be used to image DP cells at the end of the assay. Be sure the plate lid is on during all incubation and rinsing steps outside of the sterile tissue culture hood to prevent contamination during sample processing.
2. Cell Plating with Optional Genetic Manipulation
3. Sample Collection and Processing
These results show that TG neurite outgrowth was increased in the presence of primary DP cells in the underlying well compared to the control of TG neurite monoculture (Figure 2A,C). There is some assay-to-assay variability in neurite outgrowth. Thus, a TG neuron monoculture should be included in all assays as a control to detect the basal levels of neurite outgrowth. Primary cells from the Tgfbr2f/f mouse were used in this protocol after infection of Ad-Cre-GFP and Ad-eGFP was confirmed in equivalent numbers of cells (Figure 2D). The Ad-eGFP served as a control viral vector. The Ad-Cre-GFP deleted the flanked gene, Tgfbr2, as demonstrated by semi-quantitative PCR (Figure 2E). In the cultures with Transforming growth factor beta receptor 2 (Tgfbr2) deletion, neurite outgrowth was decreased (Figure 2A-C).
We utilized the Thy1-YFP mouse TG neurons and stained them with an anti-GFP antibody that produced very specific and bright images of axonal structures well above this background, as shown in Figure 2. This allowed the specific staining of neuronal markers without non-specific staining of non-neuronal cells by utilizing previously reported methods such as crystal violet7. The large pores in the filters can autofluoresce and/or accumulate secondary antibodies and decrease the precision of axonal imaging (Figure 3). While the Thy1-YFP neurons with immunofluorescence drastically improves the imaging, further background can be removed with auto-thresholding software and then quantified. We also recommend performing immunofluorescence for Neurofilament 200 based on our preliminary findings (not shown) as well as others8,9 if Thy1-YFP mice are not available.
Figure 1: A schematic of the mouse dissection to obtain cells for co-culture. (A) A diagram of where to cut to open the mouse skull and locate TG nerves, shown in black in the last depiction. Scissors indicate where to insert the scissor tips to cut along the dotted lines. (B) A combined darkfield and GFP image showing Thy1-YFP+ TG nerves circled in white. (C) Dissected TG ganglia can then be dispersed and cultured, as shown in F. (D) The mandible of a P7 mouse, with forceps holding the mandible on the left and alveolar bone ridges containing unerupted teeth on each side of the tongue. (E) DP tissue (circled) extracted from the mineralized structure (top), and the enamel outer epithelium (bottom) that was removed to disperse and plate in a tissue culture-treated plate, as shown in F. Images are not shown to scale. DP cells were dispersed and grown to confluence before adding TG neurons. Please click here to view a larger version of this figure.
Figure 2: Representative results from co-culture. (A-C) Thy1-YFP TG neurons were cultured in transwell filters with 3 μm pores atop primary Tgfbr2f/f DP cells. Immunofluorescent staining was performed for the YFP protein using an anti-GFP antibody to provide highly specific staining of neuronal structures over the entire filter. The maximum projections of 100 μm z-stack confocal microscopy images at 10x were collected and stitched with stitching software. TG neurons demonstrated significantly more outgrowth when co-cultured with DP cells (A) than when cultured alone (C). Neurite outgrowth was not induced when neurons were co-cultured with DP cells infected with Ad-Cre-GFP to knock down Tgfbr2 (B). Scale bar = 1,000 μm. Equivalent numbers of cells infected with Ad-eGFP and Ad-Cre-GFP are shown in (D). Scale bar = 125 μm. Semi-quantitative PCR confirmed the Tgfbr2 KD (E). Please click here to view a larger version of this figure.
Figure 3: Technical difficulties presented in afferent imaging. (A) Brightfield imaging of transwell filters after crystal violet staining of cell populations. Large pores are prevalent. The large arrow points out a cell that exhibits mesenchymal morphology, whereas the small arrow points to a cell of neuronal morphology. Crystal violet stained both cells without bias. (B) Immunofluorescent staining of β3 tubulin with an Alexa-488 secondary antibody showed non-specific staining of multiple cells, making imaging of afferent structures difficult. Images are representative and were repeated over multiple assays to optimize the imaging shown in Figure 2. Scale bar = 50 μm. Please click here to view a larger version of this figure.
Component | Volume | Concentration | |
MEM α | 440 mL | ||
Heat inactivated fetal bovine serume | 50 mL | 10% | |
100x L-glutamine | 5 mL | 1x | |
Penicillin-streptomycin 100 x | 5 mL | 1x | |
Change media on day 2 with mitotic inhibitors at these final concentrations | |||
Uridine | 1 μM | ||
5'-Fluor-2'deoxyuridine | 15 μM |
Table 1: Co-culture media.
The daily activities of the oral cavity require that teeth sense external stimuli and internal inflammation in order to permit proper usage and maintenance. However, only limited information is available regarding the signals that drive the developmental processes of tooth innervation. This protocol provides a method to isolate and co-culture primary DP cells and TG neurons in order to study the cross-communication between the two populations. Several variables were optimized and leave open further avenues of research, as described below.
Controls are important at every step in this assay. A transwell filter with TG neurons without underlying DP cells should be included in every assay to provide a baseline for TG growth. When deleting a flanked gene of interest with an Ad-Cre-GFP recombinase, a control virus expressing only the fluorescent marker should be used to confirm that equivalent numbers of cells have been infected. While we demonstrated high levels of infection with minimal cell death at 100 and 200 MOI for Ad-eGFP and Ad-Cre-GFP, respectively, each lab should optimize this step. Because fluorescent proteins can be attached to different promoters and therefore cause differential expression equivalent numbers of infected, fluorescing cells should be counted. The overall intensity of the fluorescence is irrelevant because it does not accurately reflect the infection status. It is important to demonstrate deletion of the gene, as shown with semi-quantitative PCR in this protocol (Figure 2). While this protocol did not address this topic, previous research demonstrated that control assays with other cells lines could be included to demonstrate that the neurite outgrowth is specifically induced by co-culture with DP cells8.
Because this protocol utilizes primary cells, there are multiple stages at which contamination can be introduced. To prevent this, all reagents should be sterile filtered. Additionally, it is recommended that experiments for every variable be run in duplicate or triplicate to allow for the removal of a filter and sterilization of a contaminated well without complete failure of the assay.
Coverslips must be coated with poly-D-lysine and/or an extracellular matrix protein to ensure DP cell adhesion. While the cells do initially attach, viral infection causes cell lifting death on uncoated coverslips and prevents the genetic manipulation of the co-culture assay.
It is well established that non-neuronal cells, such as Schwann cells from the TG ganglia, can affect the survival of neuronal cells in culture14,15,16. In this protocol, neuronal survival was optimized by adding 1 μM uridine and 15 μM 5-fluoro-2'deoxyuridine. Without the addition of these antimitotic agents to inhibit Schwann cell proliferation, neurite outgrowth will not occur. It is unknown whether the presence of these senescent Schwann cells in co-culture alter the neuronal response. Isolating murine neurons requires several additional steps, and protocols are available for investigators who want to remove this variable17. In either case, neuron dispersion somewhat mimics an axotomy and could be considered to represent injury/repair18 more than development. Further studies would be required to determine the differences between in vivo axonal growth from fascicles versus axonal growth from individual neurons in vitro, and these are not addressed in this protocol.
This protocol takes 1-3 weeks from start to finish. While it is possible to utilize DP cells that require more than 1 week to reach 85-90% confluence, it is recommended that cells be seeded at a high enough density to reach confluence within a few days since these cells divide very slowly past that point. This generally requires around 5-7 P5-8 mice per row of a 24-well plate. This protocol was optimized for a total of 5 days of co-culture, at which point the media with phenol red began to shift color. The media should be changed if longer assays are desired.
Several co-culture assays have been performed to demonstrate neurite outgrowth in response to factors secreted by the DP secreted factors with standard ECM-coated tissue culture plates3,19,20,21 or microfluidic chambers8,22,23. This protocol offers several advantages over these methods. For instance, TG ganglia and DP tissue co-culture requires a specific spatial relationship for the neurites to sense and respond to short-range paracrine signals. With organ culture, only the neurites in the ganglia closest to the DP tissue are able to respond3, whereas the dispersed TG neurons used in this protocol are cultured at an equal distance from the DP cells underneath. Second, organ cultures can introduce tissue necrosis due to the lack of oxygen and nutrients available in large samples24. The co-culture of dispersed cells removes this possibility. Some co-cultures including neurons require neuronal media3,22 which can play a dominant role in promoting neurite outgrowth. This protocol does not add neuron-specific growth factors, thereby allowing for an evaluation of the direct relationship between paracrine signals from the underlying DP cells and neurite outgrowth responses. It is worth noting that the co-culture media also lacks components to promote mineralization, such as beta-glycerophosphate. This allows investigators to determine how neurites might secrete signals to encourage mineralization. However, it also limits the study by only including less-differentiated DP cells without the mineralizing odontoblasts that would typically be present in vivo.
Colorimetric responses from previous research7,8 do not delineate Schwann cell contributions nor demonstrate neuronal morphology since crystal violet non-specifically stains all cells. Immunofluorescent staining of filters can result in high background levels that make afferent imaging difficult (Figure 2). The present protocol allows for the precise staining of neuronal afferents by utilizing Thy1-YFP TG neurons and an anti-GFP antibody and provides a signal bright enough to generate large images of growth throughout an entire figure (Figure 3). It is possible to utilize other neuronal markers, such as Anti-Neurofilament 200, if Thy1-YFP mice are not available.
Finally, using primary DP cells from mice with genes of interest flanked by loxP sites allows for simple and efficient deletion of these genes with an Ad-Cre-GFP system. In future studies, the Ad-Cre recombinase system could be used on the TG neurons if they have a gene of interest flanked by loxP sites. This would facilitate studies on how paracrine signals from the neuronal population influence DP cells, particularly if the DP cells are seeded atop the coverslips (Section 1.1). Future studies can utilize other manipulations, such as the addition of pharmacological inhibitors and/or growth factors. It is also possible to modify this protocol to include migration studies by using 8 μm porosity transwell filters.
In conclusion, this transwell co-culture assay utilizing neurons and DP cells allows for the investigation of multiple cellular parameters. This makes it possible to broaden the body of knowledge about the mesenchymal-neuronal interactions that promote and support tooth innervation.
The authors have nothing to disclose.
This work was supported by a) the National Institutes of Health/NIAMS (grant numbers R01 AR062507 and R01 AR053860 to RS), b) the University of Alabama at Birmingham Dental Academic Research Training (DART) grant (number T90DE022736 (PI MacDougall)) to SBP from the National Institute of Dental and Craniofacial Research/National Institutes of Health, c) a UAB Global Center for Craniofacial, Oral and Dental Disorders (GC-CODED) Pilot and Feasibility grant to SBP and d) the National Institute of Dental and Craniofacial Research/National Institutes of Health K99 DE024406 grant to SBP.
5-Fluoro-2'-deoxyuridine | Sigma-Aldrich | F0503 | Used as a mitotic Inhibitor at 15 μM concentration in co-culture media, Day 2 |
24 Well Cell Culture Plate | Corning | 3524 | Co-culture plate |
Alexa-546 anti-chicken | Invitrogen | A-11040 | Secondary to stain neurite outgrowth labeled by anti-GFP antibody, 1:500 dilution |
Anti-GFP Antibody | Aves Lab, Inc | GFP-1010 | Primary antibody to label Thy1-YFP neurons, 1:200 dilution |
Anti-Neurofilament 200 antibody | Sigma-Aldrich | NO142 | Monoclonal primary antibody to label neurons, 1:1000 dilution, alternative if YFP mice are not available |
B6;129- Tgfbr2tm1Karl/J | The Jackson Laboratory | 12603 | Tgfbr2f/f mouse model used for dental pulp cells in optimized protocol |
B6.Cg-Tg(Thy1-YFP)16Jrs/J | The Jackson Laboratory | 3709 | Thy1-YFP mouse model genotype used for trigeminal neurons |
Collagenase Type II | Millipore | 234155-100MG | Used to disperse trigeminal neurons |
Fetal Bovine Serum | Gibco | 10437 | Additive to co-culture media |
Fine forceps | Fine Science Tools | 11413-11 | Fine forceps for TG dissection |
Laminin | Sigma-Aldrich | L2020 | Coats the transwell inserts at final concentration of 10 μg/ml, stock solution is assumed at 1.5 mg/ml |
Lysis Buffer (Buffer RLT) | Qiagen | 79216 | Extracts RNA from dental pulp cells post co-culture |
L-Glutamine | Gibco | 25030081 | Additive to co-culture media |
Micro-dissecting scissors | Sigma-Aldrich | S3146-1EA | Dissection scissors to open skull |
Microscope Cover Glass | Fisherbrand | 12-545-81 | Circlular coverslip for optional cell culturing and immunofluorescence processing |
Minimal Essential Medium a | Gibco | 12571063 | Co-culture media base |
Penicillin-Streptomycin | Gibco | 15070063 | Antibiotic additive to co-culture media |
Phosphatase Inhibitor | Sigma-Aldrich | 04 906 837 001 | Additive to RIPA Buffer for extracting protein from dental pulp cells post co-culture |
Polybrene | Millipore | TR-1003-G | Used to aid in dental pulp cell transfection |
Poly-D-Lysine | Sigma-Aldrich | P7280 | Coverslip coating to aid dental pulp cellular adhesion |
Protease Inhibitors | Millipore | 05 892 791 001 | Additive to RIPA Buffer for extracting protein from dental pulp cells post co-culture |
RNAse/DNAse free eppendorf tubes | Denville | C-2172 | Presterilized 1.7 ml tubes for RNA, DNA or protein collection at the end of assay |
ThinCert Cell Culture Insert | Greiner Bio-One | 662631 | Transwell inserts for trigeminal neurons in co-culture assays |
Trypsin-EDTA (0.25%) | Gibco | 25200056 | Used fto disperse dental pulp cells |
Trypsin Type II | Sigma-Aldrich | T-7409 | Used to disperse trigeminal neurons |
Ultra Fine Forceps | Fine Science Tools | 11370-40 | Ultra fine forceps for dissection |
Uridine | Sigma-Aldrich | U3750 | Used as a mitotic Inhibitor at 1 μM concentration in co-culture media, Day 2 |
Vacuum Filtration System | Millipore | SCNY00060 | Steriflip disposable filter, 50 μm nylon net filter |
Vial forceps | Fine Science Tools | 110006-15 | Long forceps for tissue transfer to conicals |