Summary

哺乳动物组织和异种卵母细胞与胆固醇的丰富

Published: March 25, 2020
doi:

Summary

提出了两种胆固醇富集方法:应用富含胆固醇的环糊精来丰富哺乳动物组织和细胞,以及利用富含胆固醇的磷脂型分散物(脂质体)来丰富Xenopus卵母细胞。这些方法有助于确定胆固醇水平升高对分子、细胞和器官功能的影响。

Abstract

哺乳动物组织和细胞的胆固醇丰富,包括用于研究细胞功能的Xenopus卵母细胞,可以使用多种方法完成。在这里,我们描述了用于此目的的两种重要方法。首先,我们描述了如何使用充满胆固醇的环糊精来丰富组织和细胞,以脑动脉(组织)和海马神经元(细胞)为例。此方法可用于任何类型的组织、细胞或细胞系。胆固醇富集的替代方法包括使用低密度脂蛋白(LDL)。这种方法的优点是,它使用部分天然胆固醇平衡机制的细胞。然而,虽然环糊精方法可以应用于丰富任何细胞类型与胆固醇的兴趣,LDL方法仅限于表达LDL受体的细胞(例如,肝细胞,骨髓衍生细胞,如血白细胞和组织巨噬细胞),和浓缩水平取决于LDL受体的浓度和流动性。此外,低密度脂蛋白颗粒包括其他脂质,因此胆固醇的输送是非特异性的。其次,我们描述了如何使用含有胆固醇的磷脂色(即脂质体)来丰富异种卵母细胞的胆固醇。异种卵母细胞是一种流行的异质表达系统,用于研究细胞和蛋白质功能。对于哺乳动物组织(脑动脉)的环糊精胆固醇增生方法,以及Xenopus卵母细胞的磷脂胆固醇浓缩方法,我们证明胆固醇水平在孵育5分钟后达到最大值。在长期潜伏期(例如60分钟),这种胆固醇水平保持不变。这些数据共同为优化组织、细胞和Xenopus卵母细胞的胆固醇富集时间条件提供了基础,用于旨在研究胆固醇富集的影响的功能研究。

Introduction

胆固醇是一种主要的细胞脂质,它起着许多关键的功能和结构作用121,2,3,4,5,6,7,8,9。7,8,95,6,,3,4,,从调节血浆膜的物理特性到确保细胞的生存能力、生长、增殖,以及作为信号和前体分子在大量生化途径中,胆固醇是正常细胞和器官功能所必需的必要组成部分。因此,胆固醇缺乏会导致严重的身体畸形和各种疾病。另一方面,即使胆固醇在生理水平(2-3x)以上略有增加,也含有细胞毒性11、2、10,2,10与疾病的发展有关,包括心血管11、12、1312,13和神经退行性疾病1114、15、16、17。14,15,16,17因此,为了询问胆固醇的关键功能并确定胆固醇水平变化的影响,已经开发出了改变组织、细胞和异种卵母细胞中胆固醇含量的不同方法。

哺乳动物组织和细胞中胆固醇水平的变化
有几种方法可以被用来降低组织和细胞18的胆固醇水平。一种方法是接触溶解在脂蛋白缺乏血清中的他汀类药物,以抑制HMG-CoA还原酶,控制胆固醇合成率19,20。19,然而,这些降胆固醇药物也抑制沿美价酮途径形成非固醇产物。因此,加入少量的美价,使这些产品的形成21,并增强这种方法的特异性。降低胆固醇水平的另一种方法是使用β-环糊精。这些糖原蛋白单体单体具有一个内部疏水性腔,其直径与固醇22的大小相匹配,便于从细胞中提取胆固醇,从而消耗其原生胆固醇含量23。例如,2-羟丙基-β-环糊精(HP_CD),这是一种临床前药物,目前正在测试治疗尼曼-皮克C型疾病,一种遗传性致命的代谢紊乱,其特征是淋索质胆固醇储存24。胆固醇消耗水平取决于所使用的特定衍生物。例如,HP_CD 提取的胆固醇的容量低于甲基化衍生物,甲基β-环糊精(M+CD)24,25,26,27,28,29,30。29,3024,25,26,27,28,值得注意的是,然而,β-环糊精还可以提取其他疏水分子,除了胆固醇,这可能会导致非特异性的影响31。与耗竭相比,细胞和组织可以通过与胆固醇23的中饱和的β-环糊精进行治疗,专门与胆固醇一起丰富。这种方法也可用作胆固醇消耗31中使用的β-环糊精特异性的对照。组织和细胞中胆固醇的消耗非常简单,可以通过将细胞暴露30-60分钟到溶解在用于储存细胞的介质中的5 mM M_CD来实现。这种方法可导致胆固醇含量降低50%(例如,在海马神经元32,大鼠脑动脉33)。另一方面,准备β-环糊精-胆固醇复合物用于组织和细胞的胆固醇富集更为复杂,将在协议部分进行说明。

使用饱和胆固醇的β-环糊精来丰富组织和细胞的替代方法涉及使用LDL,它依赖于组织/细胞18中表达的LDL受体。虽然这种方法提供了使用细胞的天然胆固醇平衡机制的优点,但它有几个局限性。首先,不能用这种方法来丰富不表达LDL受体的组织和细胞。其次,低密度脂蛋白颗粒除了胆固醇外,还含有其他脂质。具体来说,LDL由蛋白质ApoB100(25%)组成和以下脂质(75%):~6-8%胆固醇,+45-50%胆汁酯,+18-24%磷脂,和+4-8%三甘油34。因此,通过低密度脂蛋白颗粒输送胆固醇是非特异性的。第三,表达低密度脂蛋白受体的组织和细胞中低密度脂蛋白增加的百分比可能明显低于使用饱和胆固醇的环糊精观察到的含量。例如,在以前的研究中,通过低密度脂蛋白使啮齿动物脑动脉与胆固醇的丰富率仅使胆固醇水平增加10-15%35。相反,如协议部分所述,这些动脉与胆固醇饱和的动脉的浓缩导致胆固醇含量增加>50%(参见代表结果部分,图1)。

异种卵母细胞中胆固醇水平的变化
异种卵母细胞是一种异质表达系统,通常用于研究细胞和蛋白质功能。早期的研究表明,Xenopus卵母细胞的胆固醇与磷脂摩尔比为0.5± 0.136。由于这种内在的高胆固醇水平,增加胆固醇含量在这个系统中是具有挑战性的,但可以通过膜磷脂和胆固醇制成的分散实现。为此,我们选择的磷脂与用于形成人造平面脂质双层的磷脂相似,包括L-β-磷脂乙醇胺(POPE)和1-棕榈-2-奥莱基-sn-糖二烯-3-磷脂-l-塞林(POPS),如协议部分所述。这种方法可能导致胆固醇含量增加 >50%(参见代表结果部分,图 2)。

用基于磷脂的分散物丰富Xenopus卵母细胞的替代方法是使用胆固醇饱和的环糊精,这与组织和细胞的丰富方式类似。然而,我们发现这种方法的可重复性和效率较低,胆固醇含量平均增加约25%。这可能是由于这两种方法的加载能力不同(请参阅代表结果部分,图 3)。相反,已经表明,使用环糊精来消耗Xenopus卵母细胞的胆固醇,可以导致胆固醇含量降低40%36。

在这里,我们专注于哺乳动物组织和细胞的胆固醇丰富,通过应用环糊精饱和胆固醇,和异种卵母细胞使用脂质体。这两种方法都可以加以利用,以划定胆固醇水平增加对蛋白质功能的影响。蛋白质功能胆固醇调制的机制可能涉及直接相互作用8和/或间接效应9。当胆固醇通过直接相互作用影响蛋白质功能时,胆固醇水平增加对蛋白质活动的影响可能与细胞类型、表达系统或浓缩方法无关。例如,我们利用这两种方法来确定胆固醇对G蛋白的影响,内向纠正钾(GIRK)通道,以心房肌细胞37、海马神经元32、38、HEK29339细胞和异种卵母细胞32,3832、37,37表示。这些研究的结果是一致的:在所有三种类型的哺乳动物细胞和两栖卵母细胞胆固醇上升调节GIRK通道功能(参见代表结果部分,图4,海马神经元和相应的实验在Xenopus卵母细胞)。此外,这些研究中的观察结果也符合在心房肌细胞37,4040和海马神经元32,38,38新鲜从动物接受高胆固醇饮食40的研究的结果一致。37值得注意的是,使用M+CD的海马神经元的胆固醇富集逆转了用于治疗高胆固醇饮食对胆固醇水平和GIRK功能38影响的阿托伐他汀疗法的效果。在其他研究中,我们研究了突变对胆固醇敏感性的影响,使用Xenopus卵母细胞和HEK293细胞41来纠正体内的钾通道Kir2.1。同样,突变对通道灵敏度的影响在两个系统中是相似的。

两种浓缩方法在确定胆固醇水平升高对分子、细胞和器官功能的影响方面应用不计其数。特别是,使用环糊精-胆固醇复合物来丰富细胞和组织是非常普遍的,主要是因为它的特异性。最近的例子包括确定胆固醇对HERG通道激活和底层机制的影响42,发现胆固醇激活G蛋白耦合受体平滑促进刺猪信号43,以及通过膜相关链接蛋白44确定胆固醇在干细胞生物力学中的作用和辅助生成。在我们自己的工作中,我们利用哺乳动物组织富集与M_CD:胆固醇复合物,研究胆固醇富集对基本功能的影响,以及大电导(BK,MaxiK)在血管平滑肌35、45、46中钙和电压门通道(BK,MaxiK)的药理学特征。35,45,46在其他研究中,我们使用基于磷脂的分散方法来丰富具有胆固醇的Xenopus卵母细胞,以确定不同区域在Kir2.1和GIRK通道中胆固醇敏感性41、47、48、4947,48,49中的作用,并确定这些通道4132、50、51中的假定胆固醇结合位,32,50

Protocol

田纳西大学健康科学中心(UTHSC)进行了所有动物实验程序。动物护理和实验议定书由UTHSC动物护理和使用委员会审查和批准,该委员会是一个由国际实验室动物护理评估和鉴定协会认可的机构。 1. 使用甲基β-环糊精与胆固醇饱和的组织和细胞浓缩 注:下面的胆固醇浓缩协议适用于组织、细胞和细胞系。例如,我们描述了为丰富哺乳动物脑动脉而执行的步?…

Representative Results

使用饱和胆固醇的环糊精作为丰富组织和细胞胆固醇的手段是公认的。在这里,我们首先演示了这种广泛使用的方法的应用,用M+CD饱和胆固醇来丰富大鼠脑动脉的胆固醇。图1A显示了一个图像脑动脉平滑肌肉层的例子,并演示了在组织富集后获得的与菲律宾相关的荧光的浓度依赖性增加,胆固醇浓度从6.25 μM-6.25 mM开始1小时。 <strong class=…

Discussion

用胆固醇丰富哺乳动物组织和细胞以及Xenopus卵母细胞的方法是研究胆固醇水平升高对单个分子物种、复杂大分子系统(如蛋白质)以及细胞和器官功能的影响的有力工具。在本文中,我们描述了促进此类研究的两种补充方法。首先,我们描述了如何使用富含胆固醇的M+CD来丰富组织和细胞。我们证明,在脑动脉部分,这种方法导致胆固醇水平增加+50%。此外,在最近的一项研究中,我们显示?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国心脏协会(至A.R.-D.)的科学家发展赠款(11SDG5190025)的支持,以及国家卫生研究所R01授予AA-023764(至A.N.B.)和HL-104631和R37 A-11560(至A.M.D.) 的支持。

Materials

Amplex Red Cholesterol Assay Kit Invitrogen A12216
Pierce BCA Protein Assay Kit Thermo Scientific 23225
Pre-Diluted Protein Assay Standards BSA set Thermo Scientific 23208
Brain PE 25Mg in Chloroform Avanti Lipids 840022C
16:0-18:1 PS 25Mg Chloroform Avanti Lipids 840034C
Cholesterol 100Mg Powder Sigma C8667
KCl Fisher P217
Trizma base Sigma T6066
HEPES Corning 61-034-RO
MgCl2 Fisher M33
NaCl Fisher S271
KH2PO4 Fisher P285
MgSO4 EMD Chemicals MX0070-1
EDTA VWR E177
Dextrose Anhydrous Fisher BP350
NaHCO3 Sigma S6014
CaCl2 Sigma C3881
Blood Gas Tank nexAir
NaOH Fisher S318
1.5mL tubes Fisher S35818
Gastight Syringe 100uL Hamilton 1710
Microliter Syringe 25uL Hamilton 702
12 mL heavy duty conical centrifuge beaded rim tube Pyrex 8120-12
Chloroform Fisher C298
Support Stand Homescience Tools CE-STAN5X8
Universal Clamp, 3-Prong Homescience Tools CE-CLPUNIV
Sonicator Laboratory Supplies G112SP1G
3D rotator mixer Benchmark Scientific B3D 1308
96 well plate Sigma BR781602
N2 gas nexAir
Glass beakers 40ml-1L Fisher 02-540
Ice Machine Scotsman CU1526MA-1
Ice bucket Fisher 50-136-7764
1X PBS Corning 21-031-CM
TritonX Fisher BP151-100
Sonic Dismembrator Fisher Model 100
Eppendorf microcentrifuge Eppendorf Model 5417R
Amber bottles Fisher 03-251-420
Corning™ Disposable Glass Pasteur Pipets FIsher 13-678-4A
Parafilm FIsher 50-998-944
Isotemp™ BOD Refrigerated Incubator FIsher 97-990E
Oocytes Xenoocyte™ 10005
Rat Envigo Sprague Dawley weight 250g
Methyl-β-cyclodextrin Sigma C4555
Water bath incubator with shaker Precision 51221080 Lowest shaker setting O/N 37 °C
Filipin Sigma SAE0088-1ML
DMSO Fisher BP231
Paraformaldehyde 4% Mallinckrodt 2621
DI H2O University DI source
ProLong Gold antifade reagnet Invitrogen P10144
Microslides 75x25mm Frosted Diagger G15978A
Forceps Fine Science Tools 11255-20
Microscope Coverslip Diagger G15972B
Clear nail polish Revlon 771 Clear
Labeling Tape Fisher 15-901-20F
Securline Lab Marker II Sigma Z648205-5EA
BD 10mL Syringe Fisher 14-823-16E
1.2 μm syringe filter VWR 28150-958
KimWipes Fisher 06-666A
pH probe Sartorus py-p112s
pH meter Denver instrument Model 225
70% ETOH Pharmco 211USP/NF
Timer Fisher 02-261-840
Steno book Staples 163485

Riferimenti

  1. Yeagle, P. L. Cholesterol and the cell membrane. Biochimica et Biophysica Acta. 822, 267-287 (1985).
  2. Yeagle, P. L. Modulation of membrane function by cholesterol. Biochimie. 73, 1303-1310 (1991).
  3. Gimpl, G., Burger, K., Fahrenholz, F. Cholesterol as modulator of receptor function. Biochimica. 36, 10959-10974 (1997).
  4. Maxfield, F. R., van Meer, G. Cholesterol, the central lipid of mammalian cells. Current Opinion in Cell Biology. 22, 422-429 (2010).
  5. Goluszko, P., Nowicki, B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infection and Immunity. 73, 7791-7796 (2005).
  6. Ramprasad, O. G., et al. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cell Motility and Cytoskeleton. 64, 199-216 (2007).
  7. Rosenhouse-Dantsker, A., Mehta, D., Levitan, I. Regulation of Ion Channels by Membrane Lipids. Comprehensive Physiology. 2, 31-68 (2012).
  8. Rosenhouse-Dantsker, A., Bukiya, A. N. Direct mechanisms in cholesterol modulation of protein function. Advances in Experimental Medicine and Biology. , 1135 (2019).
  9. Rosenhouse-Dantsker, A., Bukiya, A. N. Cholesterol modulation of protein function: sterol specificity and indirect mechanisms. Advances in Experimental Medicine and Biology. , 1115 (2019).
  10. Kellner-Weibel, G., Geng, Y. J., Rothblat, G. H. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis. 146, 309-319 (1999).
  11. Kruth, H. S. Lipoprotein cholesterol and atherosclerosis. Current Molecular Medicine. 1, 633-653 (2001).
  12. Ross, R. Atherosclerosis–an inflammatory disease. The New England Journal of Medicine. 340, 115-126 (1999).
  13. Steinberg, D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nature Medicine. 8, 1211-1217 (2002).
  14. Ho, Y. S., Poon, D. C. H., Chan, T. F., Chang, R. C. C. From small to big molecules: How do we prevent and delay the progression of age- related neurodegeneration?. Current Pharmaceutical Design. 18, 15-26 (2012).
  15. Stefani, M., Liguri, G. Cholesterol in Alzheimer’s disease: Unresolved questions. Current Alzheimer Research. 6, 15-29 (2009).
  16. Ong, W. Y., Halliwell, B. Iron, atherosclerosis, and neurodegeneration: A key role for cholesterol in promoting iron-dependent oxidative damage?. Annals of the New York Academy of Sciences. 1012, 51-64 (2004).
  17. Igoumenou, A., Ebmeier, K. P. Diagnosing and managing vascular dementia. Practitioner. 256, 13-16 (2012).
  18. Luu, W., Gelissen, I. C., Brown, A. J. Manipulating Cholesterol Status Within Cells. Methods in Molecular Biology. 1583, 41-52 (2017).
  19. Egom, E. E. A., Hafeez, H. Biochemistry of statins. Advances in Clinical Chemistry. 73, 127-168 (2016).
  20. Igel, M., Sudhop, T., von Bergmann, K. Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. Journal of Clinical Pharmacology. 42, 835-845 (2002).
  21. Nakanishi, M., Goldstein, J. L., Brown, M. S. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. The Journal of Biological Chemistry. 263, 8929-8937 (1988).
  22. López, C. A., de Vries, A. H., Marrink, S. J. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction. PLoS Computational Biology. 7, e1002020 (2011).
  23. Christian, A. E., Haynes, M. P., Phillips, M. C., Rothblat, G. H. Use of cyclodextrins for manipulating cellular cholesterol content. Journal of Lipid Research. 38, 2264-2272 (1997).
  24. Dai, S., et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 13, 1435-1451 (2017).
  25. Chen, F. W., Li, C., Ioannou, Y. A. Cyclodextrin induces calcium- dependent lysosomal exocytosis. PLoS One. 5, e15054 (2010).
  26. Soga, M., et al. HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. Stem Cells. 33, 1075-1088 (2015).
  27. Maetzel, D., et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports. 2, 866-880 (2014).
  28. Sarkar, S., et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 dis- ease. Cell Reports. 5, 1302-1315 (2013).
  29. Rosenbaum, A. I., Zhang, G., Warren, J. D., Maxfield, F. R. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proceedings of the National Academy of Sciences of the United States of America. 107, 5477-5482 (2010).
  30. Yu, D., et al. Niemann-Pick Disease Type C: Induced Pluripotent Stem Cell-Derived Neuronal Cells for Modeling Neural Disease and Evaluating Drug Efficacy. Journal of Biomolecular Screening. 19, 1164-1173 (2014).
  31. Zidovetzki, R., Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochimica et Biophysica Acta. 1768, 1311-1324 (2007).
  32. Bukiya, A. N., Durdagi, S., Noskov, S., Rosenhouse-Dantsker, A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. The Journal of Biological Chemistry. 292, 6135-6147 (2017).
  33. Bukiya, A. N., Vaithianathan, T., Kuntamallappanavar, G., Asuncion-Chin, M., Dopico, A. M. Smooth muscle cholesterol enables BK β1 subunit-mediated channel inhibition and subsequent vasoconstriction evoked by alcohol. Arteriosclerosis, Thrombosis and Vascular Biology. 31, 2410-2423 (2011).
  34. Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nature Reviews Genetics. 10, 109-121 (2009).
  35. Bisen, S., et al. Distinct mechanisms underlying cholesterol protection against alcohol-induced BK channel inhibition and resulting vasoconstriction. Biochimica et Biophysica Acta. 1861, 1756-1766 (2016).
  36. Santiago, J., et al. Probing the Effects of Membrane Cholesterol in the Torpedo californica Acetylcholine Receptor and the Novel Lipid-exposed Mutation αC418W in Xenopus Oocytes. The Journal of Biological Chemistry. 276, 46523-46532 (2001).
  37. Deng, W., et al. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. The Journal of Biological Chemistry. 287, 4925-4935 (2012).
  38. Bukiya, A. N., Blank, P. S., Rosenhouse-Dantsker, A. Cholesterol intake and statin use regulate neuronal G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2. Journal of Lipid Research. 60, 19-29 (2019).
  39. Bukiya, A. N., et al. Cholesterol increases the open probability of cardiac KACh currents. Biochimica et Biophysica Acta Biomembranes. 1848, 2406-2413 (2015).
  40. Bukiya, A. N., Rosenhouse-Dantsker, A., Kumar, S. A. Hypercholesterolemia effect on potassium channels. Hypercholesterolemia. , 95-119 (2015).
  41. Rosenhouse-Dantsker, A., et al. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of Kir channels by cholesterol and PI(4,5)P2. The Journal of Biological Chemistry. 287, 40266-40278 (2012).
  42. Chun, Y. S., Oh, H. G., Park, M. K., Cho, H., Chung, S. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression. Channels. 7, 275-287 (2013).
  43. Luchetti, G., et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife. 5, e20304 (2016).
  44. Sun, S., et al. Cholesterol-dependent modulation of stem cell biomechanics: application to adipogenesis. Journal of Biomechanical Engineering. , (2019).
  45. North, K., Bisen, S., Dopico, A. M., Bukiya, A. N. Tyrosine 450 in the Voltage- and Calcium-Gated Potassium Channel of Large Conductance Channel Pore-Forming (slo1) Subunit Mediates Cholesterol Protection against Alcohol-Induced Constriction of Cerebral Arteries. The Journal of Pharmacology and Experimental Therapeutics. 367, 234-244 (2018).
  46. Bukiya, A. N., Dopico, A. M. Regulation of BK Channel Activity by Cholesterol and Its Derivatives. Advances in Experimental Medicine and Biology. 1115, 53-75 (2019).
  47. Rosenhouse-Dantsker, A., Leal-Pinto, E., Logothetis, D. E., Levitan, I. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels. 4, 63-66 (2010).
  48. Rosenhouse-Dantsker, A., Logothetis, D. E., Levitan, I. Cholesterol Sensitivity of Kir2.1 is controlled by a belt of residues around the cytosolic pore. Biophysical Journal. 100, 381-389 (2011).
  49. Rosenhouse-Dantsker, A., Noskov, S. Y., Logothetis, D. E., Levitan, I. Cholesterol sensitivity of Kir2.1 depends on functional inter-links between the N and C termini. Channels. 7, 303-312 (2013).
  50. Rosenhouse-Dantsker, A., Noskov, S., Durdagi, S., Logothetis, D. E., Levitan, I. Identification of novel cholesterol-binding regions in Kir2 channels. The Journal of Biological Chemistry. 288, 31154-31164 (2013).
  51. Bukiya, A. N., Rosenhouse-Dantsker, A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2. Biochimica et Biophysica Acta Biomembranes. 1859, 1233-1241 (2017).
  52. Yi, A., Lin, Y. F., Jan, Y. N., Jan, L. Y. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron. 29, 657-667 (2001).
  53. Bukiya, A., Dopico, A. M., Leffler, C. W., Fedinec, A. Dietary cholesterol protects against alcohol-induced cerebral artery constriction. Alcoholism, Clinical and Experimental Research. 38, 1216-1226 (2014).
  54. Simakova, M. N., Bisen, S., Dopico, A. M., Bukiya, A. N. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle. Biochemical Pharmacology. 145, 81-93 (2017).

Play Video

Citazione di questo articolo
Slayden, A., North, K., Bisen, S., Dopico, A. M., Bukiya, A. N., Rosenhouse-Dantsker, A. Enrichment of Mammalian Tissues and Xenopus Oocytes with Cholesterol. J. Vis. Exp. (157), e60734, doi:10.3791/60734 (2020).

View Video