土壌表面上部5mmの温度と水分量を正確に測定することで、生物学的、化学的、物理的プロセスに関する環境制御に対する理解を深めることができます。ここでは、土壌表面温度と水分センサを用いて測定を行い、測定を行うためのプロトコルについて説明します。
土壌表面の温度と水分を定量化することは、土壌表面ビオタが環境の変化にどのように反応するかを理解するために不可欠です。しかし、土壌表面では、これらの変数は非常に動的であり、標準的なセンサーは土壌プロファイルの上の数ミリメートルの温度や水分を明示的に測定しません。本論文では、土壌表面上部5mmの温度と水分を同時に測定する、シンプルで安価なセンサの製造方法について述べた。センサーの構造に加えて、品質管理の手順だけでなく、様々な基板のキャリブレーションについても説明します。センサーは、温度を測定し、5ミリメートルの深さでセンサーの端にある2つの金めっき金属プローブ間の抵抗を測定することにより、温度を測定し、土壌水分を評価するためにタイプE熱電対を組み込みます。ここで示す方法は、異なる深さまたは基板のプローブをカスタマイズするために変更することができます。これらのセンサーは、様々な環境で有効であり、熱帯林の数ヶ月の豪雨だけでなく、米国南西部の砂漠での激しい太陽放射に耐えてきた結果、評価のためのこれらのセンサーの有効性を実証地球規模の変化実験における土壌表面の温暖化、乾燥、凍結
環境センサは、生態系のダイナミクスを評価、監視、理解するための重要なツールです。温度と水分は、土壌中の生物学的プロセスの基本的な要因であり、土壌生物1、2の活性およびコミュニティ組成に影響を与える。また、温度や水分は、苗の出現およびゴミ分解率3、4、5のタイミングに影響を与することが示されている。乾燥地の生態系では、血管植物で覆われていない土壌表面には、生物土殻(バイオクラスト)として知られる苔、苔、シアノバクテリアの群れが多い(図1)。これらのコミュニティは、土壌表面に存在し、土壌6に数ミリメートルよりも深く浸透することはめったにありません。生物学的土壌地殻は、土壌安定化、水浸透および蒸発速度、アルベド、温度、栄養循環、および土壌雰囲気CO2交換7、8、9に強く影響を与えることができる。一部のシステムでは、これらの表面コミュニティの活動は、全体的な土壌属性と様々なプロセスの速度10を支配することができます。浅い深さに測定を明示的に焦点を当てるセンサーは、サーフィンの温度と水分が種子の発芽、分解率、土壌表面ビオタの応答、ならびに他の多くの生態系機能にどのように影響するかをさらに理解するのに役立ちます。
土壌センサ技術の最近の発展は、土壌表面11、12における生物学的プロセスを理解するための空間的に明示的な測定の重要性を示している。土壌水分を分析するための従来の方法は、土壌表面の下に配置されたセンサーを組み込み、多くの場合、深さ間で測定を統合します。これらのプローブによって記録された土壌水分は、土壌生物に対する環境制御の理解を知らせるのに役立ちますが、土壌表面で発生するニュアンスの多くを見逃している可能性があります。土壌の上数ミリメートルの水分含有量を明示的に測定するために、ウェーバーらは最近、土壌表面の電気伝導性を介して土壌水分を3mm11の深さに決定するバイオクラスト湿度プローブ(BWP)を開発した。ウェーバーのセンサーを0~5cmの統合水分プローブと組み合わせて使用し、タッカーらは土壌表面の上数ミリメートルに焦点を当てた水分センサーの重要性を実証しました。特に、バイオクラストコミュニティの活性に大きく関連した小さな降水イベントは、0〜50mm(すなわち、5cm)の統合プローブに登録されず、BFP12によってのみ検出された。土壌の上の数ミリメートルに焦点を当てたセンサーは、表面を越えて浸透するのに十分な大きさではないが、表面のビオタからの応答を誘導するのに十分な水分事象を測定するために不可欠です。
土壌表面温度は、生理学的プロセスを駆動するもう一つの重要な環境要因です。日当のない土壌表面温度は、特に無陰の土壌表面が大量の日射量にさらされている植物間空間において、非常に可変的な場合があります。また、土壌プロファイル13または空気14の深さよりも土壌表面の温度が変動する。例えば、タッカーらは、わずか24時間で発生する約60°C(13〜72°C)の最大日色土壌表面温度範囲を示した。これらの温度は、土壌表面に3mm挿入された熱電対を用いて測定した。一方、近くの温度プローブは、同じ日12の間にわずか30°C(22-52°C)の範囲を測定しました。土壌表面の温度を明示的に測定する熱電対は、表面土壌が50mmの深さの値に対して1日の暑さの間に10°C寒く、20°C暖かかったため、深さ50mmのセンサーよりもはるかに高い変動を示しました。
温度は、生理学的プロセスに対する重要な制御を表します。例えば、実験室の状態で一定の土壌水分では、土壌からのCO2損失は、ほとんどの生態系2、15、16の温度の上昇に伴って劇的に増加する。同様に、コントロールに対するプロット温度の上昇を目的としたフィールド気候操作研究のデータは、温かい土壌が近くの非加熱土壌(少なくとも治療の最初の年17、18)よりも多くのCO2を放出し、生物の土壌が温暖化7、9に対して同様の応答を示すことを示している。温度と水分の両方が重要な環境変数であることが実証されており、土壌表面の気候条件を正確に捕捉できるセンサは、それらが土壌表面11、12における生物の生理学的プロセスにどのように影響するかを解明することができる。
本論文では、温度と水分の両方を土壌表面下5mmの深さまで測定するように設計されたセンサーを提示し、これらの変数がサーフィシャルビオタとどのように相互作用し、生物学的応答を駆動するかを評価する際に大きな力を提供する。タイプE熱電対は2つの金属(クロムとコンスタンタン)で作られており、金属の温度変化はデータロガーによって記録される異なる電圧を作成します。土壌水分センサーは、2つの金メッキ金属プロング間の抵抗を測定します。より多くの水が伝導性を増加させ、プロング間の抵抗を減少させるので、抵抗は土壌水分の影響を受けます。ウェーバーらの設計に従って、これらのセンサーは5 mmの深さまで土壌水分を測定し、さらに同じプローブ上の温度を測定するための熱電対を含む。これらのセンサーは単一の調査を使用して土壌表面の温度および湿気のダイナミクスの結合の方法の洗練された眺めを可能にする。これらのプローブは、表面に生息する生物が環境の変化にどのように反応するかを探求する無数の機会を提供します。これらのセンサーの追加の利点は、比較的簡単で、構築と校正が安価であり、研究者は容易にその使用を採用することができるということです。
次のプロトコルでは、センサーをデータロガーに接続するための概要を含む、センサーを構築するための材料と方法について詳しく説明します。これらのセンサーは市販のロガーを使用していましたが、マルチプレクサに取り付けることができる任意のデータロガーを使用することができます。目的の基板にセンサを較等させる方法についても説明する。
土壌表面温度と水分プローブは、土壌表面の温度と水分量を分析するための効果的なツールであることができます。ウェーバーら11によって開発されたバイオクラスト湿度プローブ(BWP)を除き、一般的な土壌温度および水分センサは、土壌表面の上数ミリメートルでこれらの環境変数を明示的に測定しません。開発時、BSPは表面の土壌水分のみを推定し、温度20は推定しなかった。この原稿に記載されたオリジナルのBWP設計をガイドとして開発し、温度と水分を同時に測定し、これらの環境変数が互いにどのように相互作用するか、ならびに土壌表面における生物学的、化学的、物理的プロセスとの相互作用を評価するために開発されました。
これらのプローブの最適な動作を確保するには、いくつかの考慮事項があります。センサーを構築する間は、内側のシースを切断し、基礎となる金属ワイヤーを露出しないように注意することが重要です。これは、ワイヤ間の導電率とクロストークの変動につながる可能性があります。また、同じ環境内の各プローブの熱電対と抵抗率センサーの両方をテストし、それらが適切に構築されていること、および測定値の変動が土壌基板の物理的および化学的差異によるものであることを確認することも重要です。測定。キャリブレーションプロセス中に、土壌またはバイオクラスト基板の変動を適切に考慮するためには、十分な大きさのサンプル数の抵抗とGWCキャリブレーションが重要です。また、電気分解や腐食により、時間の経過とともにプローブが「ドリフト」するのが一般的であるため、ウェットからドライまで、同じプローブと基板の組み合わせを2回テストするのが最善です。さらに、キャリブレーション中は、プローブの長さ(6~7mm)を収容するのに十分な深さしかない浅い基板サンプルを使用して、測定された水の重量が主に導電率測定の領域にある水からのものとなることが重要です。(プローブ間およびプローブの周囲)。これにより、土壌中の水量の変化は、プローブの抵抗測定の変化に直接関連します。最後に、これらのプローブを現場に配備する際には、導電測定の干渉を制限するが、センサーが位置をずらさないように、プローブを土壌表面(例えば、非導電性ガーデンステーク)に適切に固定することが重要です。長期的な測定の質を低下させます。
また、これらのセンサーのいくつかの制限に注意することも重要です。抵抗率プローブの長さはわずか5mmなので、基板内の大きな空気で満たされた細孔空間の影響を強く受けることができます。プローブに沿った大きな空気ギャップは、基板の接続性を低下させ、一般的に測定された導電性を低下させ、したがって推定水分量を低くするため、より大きなスケール全体で実際の土壌水分を反射しない可能性があります。同様に、土壌の化学組成は、土壌水分の測定値に影響を与えることができます。より高いサリン度は導電性を増加させ、シーメンス値21を高くする。両方の問題は、適切な基板固有のキャリブレーションで解決する必要があります。しかし、一部の土壌は化学的な違いを維持したり、これらのセンサーの環境が悪い可能性がある大きな細孔空間アーキテクチャを持つ場合があります。温度はまた、土壌の電気伝導度に影響を与えるので、15を考慮する必要があります。将来的には、これらのセンサを使用した温度キャリブレーションを実施して、温度が測定された基板の抵抗をどのように変化させるかを決定する必要があります。
ウェーバーら11が開発したバイオクラストの湿度プローブと同様に、これらのセンサキャリブレーションは、抵抗測定が中水内容物で信頼性が高いが、非常に高く低い水内容物でいくつかの異常を経験することを示しています(図6)。さらに、ドライダウンキャリブレーション中に、基板サンプルにまだ水が存在していた場合、抵抗値がゼロを読み取ることがあります。これは、キャリブレーションコンテナ内の基板の量が、センサによって測定された領域よりもわずかに大きいためである可能性があります。水が抵抗領域の外側に存在する場合、基板がまだ水分を持っている間、センサーはゼロを読み取ります。抵抗測定を損なうことなく基板サイズを小さくすることに注意を払った。水分量が増加するにつれて、基板内の抵抗値が減少し、シーメンス出力が高くなります。しかし、水分含有量が最も高いほど、水分含有量が増加すると抵抗値が大きくなります。これは、図 1Cに示すように、キャリブレーション データの”フック”につながります。このフックは、キャリブレーションに使用される各基板に存在していましたが、微細な砂の土壌で最も顕著でした(図6)。ウェーバーら11は、高水内容物で異常抵抗が増加する潜在的な原因が飽和土壌中のイオンを希釈し、それによって抵抗力を高めることであることを示唆している。
これらのセンサは現在、既存のマルチプレクサおよびデータロガー技術の使用に依存しています。マルチプレクサはセンサーを「オフ」にし、プログラムされた時間にセンサーに電流を送信するだけです。これにより、土壌水分センサー端子の腐食を防ぎます。他の電子企業は、プローブ用のデータロガーとマルチプレクサの代替手段を提供し、プログラマブル回路基板とコンピュータは、土壌温度および水分センサの無線設計のために組み込むことができ、エキサイティングな進歩。
センサーの設計と構築により、研究者はプローブをカスタマイズできます。プロングの長さと方向は、異なる媒体または異なる深さで水分をより良く評価するために操作することができます。カスタム配線は、同じケーブルから発する複数のセンサーヘッドを備えた設計を可能にするために注文することができます。安価なデータロギングとマルチプレクサオプションを追加すると、これらのセンサは、研究者が土壌表面の温度と土壌水分を測定するための安価でアクセス可能なオプションを提供します。これには、霜や露の形成などの事象を捕捉しにくい測定(図8)や、温暖化などの実験的な治療効果が含まれます(図7)。このペーパーでは、温度と水分を同時に測定する土壌表面センサーを構築するためのステップバイステップガイドを提供します。
The authors have nothing to disclose.
ロビン・ライボルトの慎重なアーク溶接とカラ・ラウリアの校正時の精度に感謝します。スティーブ・フィック博士と3人の匿名のレビュー担当者が、この原稿の以前の草稿に関する有益なコメントをしてくれたことに感謝しています。この研究は、米国地質調査地質調査地質科学プログラムおよび米国エネルギー省科学省生物環境研究地上生態系科学プログラム(アワード89243018SSSC000017およびDESC-0008168)によって支援されました。BWの研究は、ドイツ研究財団(助成金WE2393/2-1、2-2)、マックスプランク協会、グラーツ大学によって支援されました。貿易、会社、または製品名の使用は、説明的な目的のみを目的としており、米国政府による支持を意味するものではありません。
Single sensor audio cable | alliedelec.com | Allied Stock #: 70004848 | Cable; 1Pr; 22AWG; 7×30; TC; PP ins; Foil; Black PVC jkt; CMR |
Double sensor audio cable | alliedelec.com | Allied Stock #: 70004635 | Cable; 2Pr; 22AWG; 7×30; TC; PP ins; Foil; Black LSZH jkt; CMG-LS |
Thermocouple cable | Omega.com | Part #: TT-E-24-TWSH-SLE-(Desired length) | Type E, 24 ga, PFA (teflon coated), twisted shielded, special limits of error |
Eight prong terminal strip | Samtec.com | MTSW-108-21-G-S-1130-RA | |
Four prong terminal strip | Samtec.com | MTSW-104-21-G-S-1130-RA | |
Two prong socket strip | Samtec.com | SSW-102-03-G-S | |
0.13" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K51 | |
0.25" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K53 | |
0.38" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K54 | |
0.5" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K55 | |
Liquid electrical tape | McMaster.com | Part #: 76425A23 | |
Metal film resistor | Newark.com | Part #: RN55C1001BB14 | |
Voltage divider resistor | Newark.com | Part #: 83F1210 | |
16- or 32-Channel Relay Multiplexer | campbellsci.com | AM16/32B | This relay multiplexer is critical for the sensors to function correctly |
CR1000X Measurement and Control Datalogger | campbellsci.com | CR1000X |