La estimulación vestibular galvánica en humanos presenta mejoras en la función vestibular. Sin embargo, se desconoce cómo se producen estos efectos. Aquí, describimos cómo aplicar ruido eléctrico sinusoidal y estocástico y evaluar amplitudes de estímulo apropiadas en neuronas individuales del núcleo vestibular medial en el ratón C57BL/6.
Se ha demostrado que la estimulación vestibular galvánica (GVS) mejora las medidas de equilibrio en individuos con deficiencias vestibulares o de equilibrio. Se propone que esto se deba al fenómeno de resonancia estocástica (SR), que se define como la aplicación de un estímulo de bajo nivel/subumbral a un sistema no lineal para aumentar la detección de señales más débiles. Sin embargo, todavía se desconoce cómo SR exhibe sus efectos positivos en el equilibrio humano. Esta es una de las primeras demostraciones de los efectos del ruido sinusoidal y estocástico en las neuronas individuales. Utilizando electrofisiología de abrazadera de parche de células enteras, el ruido sinusoidal y estocástico se puede aplicar directamente a las neuronas individuales en el núcleo vestibular medial (MVN) de los ratones C57BL/6. Aquí demostramos cómo determinar el umbral de las neuronas MVN con el fin de asegurar que los estímulos sinusoidales y estocásticos están subumbrales y a partir de esto, determinar los efectos que cada tipo de ruido tiene en la ganancia neuronal MVN. Mostramos que el ruido sinusoidal y estocástico subumbral puede modular la sensibilidad de las neuronas individuales en el MVN sin afectar las tasas de disparo basales.
El sistema vestibular (o de equilibrio) controla nuestro sentido del equilibrio integrando información auditiva, proprioceptiva, somatosensorial y visual. Se ha demostrado que la degradación del sistema vestibular se produce en función de la edad y puede dar lugar a déficits de equilibrio1,2. Sin embargo, las terapias dirigidas al funcionamiento del sistema vestibular son escasas.
Se ha demostrado que la estimulación vestibular galvánica (GVS) mejora las medidas de equilibrio, el funcionamiento autónomo y otras modalidades sensoriales dentro de los seres humanos3,4,5,6. Se dice que estas mejoras se deben al fenómeno de resonancia estocástica (SR), que es el aumento de la detección de señales más débiles en sistemas no lineales mediante la aplicación de ruido subumbral7,8. Estos estudios han demostradomejoras en las pruebas estáticas 9,10 y dinámicas11,12 de equilibrio y de salida vestibular como Ocular Counter Roll (OCR)13. Sin embargo, muchos de estos estudios han utilizado diferentescombinaciones de parámetros de estímulo como el ruido blanco 9, el ruido de color13,diferentes rangos de frecuencia de estímulo y técnicas de umbral. Por lo tanto, los parámetros de estímulo óptimos siguen siendo desconocidos y este protocolo puede ayudar a determinar los parámetros más eficaces. Además de los parámetros de estímulo, el tipo de estímulo también es importante en la eficacia terapéutica y experimental. El trabajo anterior en humanos se realizó utilizando estímulos de ruido eléctrico, mientras que gran parte del trabajo animal in vivo ha utilizado 14,15 u estímulos de ruido optogenéticos16. Este protocolo utilizará ruido eléctrico para examinar los efectos sobre los núcleos vestibulares.
Anteriormente, la aplicación de GVS para estimular afferents vestibulares primarios se realizó in vivo en monos ardilla17,chinchillas18,embriones de pollo15 y conejillos de indias14. Sin embargo, sólo dos de estos estudios examinaron el efecto que GVS tiene sobre la ganancia de aferentes vestibulares primarios14,15. Estos experimentos se realizaron in vivo, lo que significa que no se pueden determinar los patrones precisos de estimulación impuestos a los núcleos vestibulares. Hasta nuestro conocimiento, sólo otro estudio ha aplicado el ruido estocástico a las neuronas enzimáticamente disociadas individuales en el sistema nervioso central19. Sin embargo, no se han realizado experimentos en los núcleos vestibulares centrales para evaluar los parámetros de estímulo apropiados y las técnicas de umbral, haciendo que este protocolo sea más preciso en la determinación de los efectos de estímulo en las neuronas individuales dentro del vestibular Núcleos.
Aquí, describimos cómo aplicar ruido sinusoidal y estocástico (eléctrico) directamente a las neuronas individuales en el núcleo vestibular medial (MVN), determinar el umbral neuronal y medir los cambios en la ganancia / sensibilidad.
Los efectos de la estimulación vestibular galvánica (GVS) en el sistema vestibular se han destacado in vivo en humanos3,13,23, conejillos de indias14, roedores18 y primates no humanos24. Sin embargo, ninguno de estos estudios ha evaluado el impacto directo del ruido eléctrico en la sensibilidad de las neuronas individuales en el sistema vestibular. Aquí …
The authors have nothing to disclose.
SPS fue apoyado por la beca de investigación de posgrado de la Universidad de Sídney.
CaCl | Scharlau | CA01951000 | Used for ACSF and sACSF |
D-(+)-Glucose | Sigma | G8270 | Used for ACSF and sACSF |
EGTA | Sigma | E0396-25G | Used for K-based intracellular solution |
HEPES | Sigma | H3375-25G | Used for K-based intracellular solution |
KCl | Chem-supply | PA054-500G | Used for ACSF, sACSF and intracellular solution |
K-gluconate | Sigma | P1847-100G | Used for K-based intracellular solution |
Mg-ATP | Sigma | A9187-500MG | Used for K-based intracellular solution |
MgCl | Chem-supply | MA00360500 | Used for ACSF and sACSF |
Na3-GTP | Sigma | G8877-100MG | Used for K-based intracellular solution |
NaCl | Chem-supply | SO02270500 | Use for ACSF and intracellular solution |
NaH2PO4.2H2O | Ajax | AJA471-500G | Used for ACSF and sACSF |
NaHCO3 | Sigma | S5761-1KG | Used for ACSF and sACSF |
Sucrose | Chem-supply | SA030-500G | Used for sACSF |
Isoflurane | Henry Schein | 1169567762 | Used for anaesthetising mice |
EQUIPMENT | |||
Borosilicate glass capillaries | Warner instruments | GC150T-7.5 | 1.5mm OD, 1.16mm ID, 7.5cm length |
Data acquisition software | Axograph | Used for electrophysiology and analysis | |
Friedmen-Pearson Rongeurs | World precision instruments | 14089 | Used for dissection |
Micropipette puller | Narishige | PP-830 | Used for micropipette |
Multiclamp amplifier | Axon instruments | 700B | Used for electrophysiology |
pH meter | Sper scientific | 860033 | Used for internal solution |
Standard pattern scissors | FST | 14028-10 | Used for dissection |
Sutter micromanipulator | Sutter | MP-225/M | Used for electrophysiology |
Upright microscope | Olympus | BX51WI | Used for electrophysiology |
Vibratome | Leica | VT1200 | Used for slicing brain tissue |