Summary

用于研究近实时真实考试体验的跨学科、多模式实验设计

Published: September 04, 2019
doi:

Summary

开发了一个实验设计,以调查考试经验的实时影响,以评估学生在高等教育环境和任务中经历的情感现实。这种设计是跨学科(如教育心理学、生物学、生理学、工程学)和多模态(如唾液标记、调查、电极传感器)方法的结果。

Abstract

近十年来,对学生在教育环境中情绪的研究有所增加。尽管研究人员呼吁进行更多的依赖客观情绪体验测量的研究,但使用多模态数据源存在限制。课堂上情绪和情绪调节的研究传统上依赖于调查工具、经验采样、文物、访谈或观察程序。这些方法虽然有价值,但主要取决于参与者或观察者的主观性,并且在真实地衡量学生对课堂活动或任务的实时表现时受到限制。后者尤其给许多学者造成绊脚石,他们试图客观地测量课堂上实时的情绪和其他相关措施。

这项工作的目的是提出一个协议,以实验研究学生在真实评估情况下对考试体验的实时响应。为此,一组教育心理学家、工程师和工程教育研究人员设计了一个实验协议,保留了精确生理传感器测量所需的限制、唾液收集最佳实践以及真实的测试环境。特别是,依赖生理传感器的现有研究是在与教育环境(例如,Trier 压力测试)脱节、及时分离(例如任务之前或之后)或引入分析误差的实验环境中进行的(例如,在学生可能移动的环境中使用传感器)。这限制了我们对学生对课堂活动和任务的实时响应的理解。此外,最近的研究要求围绕征聘、可复制性、有效性、设置、数据清理、初步分析和特定情况(例如,在实验中增加一个变量)等问题,应更多地加以考虑。设计)在学术情感研究,依赖于多模式方法。

Introduction

心理学家早就明白了人类情绪在阐明其行为时的重要性。在教育研究中,学术成就情感(AEE)已成为情感研究的重点。使用AAE的研究人员认为,在检查学生的情绪时,学生所处的情境环境很重要。学生可能会经历与测试相关的、与班级相关的或学习相关的情绪,这些情绪涉及多组成部分的过程,包括情感、生理、动机和认知因素。AEE 以两种形式表示:价(正/负)和激活(聚焦/无聚焦能量)。积极激活情绪,如享受,可能会增加反思过程,如元认知,而积极停用情绪,如骄傲可能会导致低水平的认知处理。消极的激活情绪,如愤怒和焦虑,可能会激发参与,而消极的停用情绪,如绝望可能抑制动机3,4,5。学术情感有助于我们如何学习,感知,决定,回应和解决问题2。为了调节学术情绪,个人必须拥有自我效能(SE)6,7,8,这是他们对自己控制动机、行为和社会环境的能力的信心6.自我效能感与学术情绪是相互关联的,自我效能低下与消极的失活情绪(如焦虑、愤怒、无聊)有关,而更高的自我效能与积极激活情绪(如快乐、希望、兴奋)6,78。SE也被认为与性能6,7,8密切相关。

研究研究课堂情绪依赖于自我报告,观察,访谈和文物(例如,考试,项目)9,10。尽管这些方法提供了有关学生课堂体验的丰富上下文信息,但它们有重大局限性。例如,访谈、观察和自我报告依赖于个人的自省10。其他方法则试图比以前的研究人员更近地研究学术情绪,例如那些基于经验抽样的方法,研究人员要求学生在11日上学期间报告自己的情绪。虽然这项研究允许我们更准确地报告学生的情绪,但这项工作依赖于自我报告方法,并且不允许实时报告,因为学生必须暂停考试工作,以解决经验调查问题。

最近,研究人员开始解决对自我报告措施的担忧,使用生物或生理测量的情绪9,结合其他仪器或技术,如调查,观察,或访谈,包括一种多模式的数据收集形式,用于教育和心理学研究12。例如,生物技术,包括唾液生物标志物,正被用来理解生物过程对认知、情感、学习和表现的作用13,14,15。对于认知过程,雄激素(例如,睾丸激素)与成人和儿童16、17的不同空间识别模式有关,而下丘脑-垂体-腺皮质激素(如皮质醇)和肾上腺素激素(例如,唾液β-淀粉酶或sAA)与个体间的应激反应有关18、19、20。

电极活动 (EDA) 代表自主神经系统 (ANS) 激活的生理测量,与系统激活、认知负荷或强烈的情绪反应增加有关21,22 , 23.在考试活动中,EDA 受身体流动性21、22、身体和环境温度24、25、26、27 和语言影响。想法28,以及模拟数字电极与皮肤29的灵敏度和连接程度。

虽然这些是使用 EDA 的局限性,但此技术仍然可以提供宝贵的见解,了解近实时检查中发生的情况,并可作为探索 AEE 和程度自我效能的有前途的工具。因此,可以通过综合调查方法,确定情绪的价位,以及生理和生物数据,以测量情绪的激活,从而获得学生的AEE的准确图像。本文件以先前关于检查活动30的出版物为基础,并扩大了这项工作的范围,在检查方案中包括多模式方法(使用经验抽样调查、EDA传感器和唾液生物标志物)。必须指出,下面描述的协议允许在单个实验环境中同时收集多个参与者数据。

Protocol

机构审查委员会(IRB)在犹他州立大学对人类主题的研究和这些结构的使用进行了一般性审查,批准了程序。典型结果包括两个学期的工程静态课程,每个学期的实验设置略有不同,在美国的一所西方高等教育机构。实践考试的内容与实际考试平行,由课程讲师开发并用于我们的学习。请注意,下面概述的协议描述了并发步骤,有些步骤可能会重叠。 1. 实验设计与纪律实践整?…

Representative Results

在这项研究中,我们有兴趣研究本科生参加实践考试时的自我效能、性能和生理(EDA传感器)和生物(sAA和皮质醇)反应的影响。显示的数据是样本的代表性子集:(a) 考虑调查和电极传感器(实验设计 A)和 (b) 与唾液生物标志物数据(实验设计 B)相同的检查。虽然我们在这项研究中收集了情绪数据,但我们不会提供这些数据,因为我们的目标是实时演示粒度数据?…

Discussion

尽管许多真实的学习环境中都使用了生理测量方法,但设计一个考虑到当前技术局限性的学习环境至关重要。我们的设计平衡了对真实测试环境的需求,并适应了技术。舒适地限制参与者移动、减少意外中断以及时间戳的参与者的测试响应都是协议中的关键步骤。

电极传感器装置的空间和费用可能使研究经费有限的研究人员不切实际。然而,一旦购买,这些传感器有无限的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

此材料基于部分由美国国家科学基金会 (NSF) 支持的工作。EED-1661100 以及 NSF GRFP 赠款授予达西·克里斯滕森(第 120214 号)。本材料中表达的任何意见、发现和结论或建议不一定反映 NSF 或 USU 的观点、结论或建议。我们要感谢谢里·本森对我们的统计分析进行善意的讨论和建议。

本文作者的贡献如下:Villanueva(研究设计、数据收集和分析、写作、编辑);胡斯曼(研究设计、数据收集、写作、编辑);克里斯滕森(数据收集和分析、写作、编辑);Youmans(数据收集和分析、写作和编辑);汗(数据收集和分析、写作、编辑);维乔索(数据收集和分析、编辑);兰普金斯(数据收集和编辑);格雷厄姆(数据收集和编辑)

Materials

1.1 cu ft medical freezer Compact Compliance # bci2801863 They can use any freezer as long as it can go below -20 degrees Celsius; these can be used to store salivary samples for longer periods of time (~4 months) before running salivary assays.
Camping Cooler Amazon (any size/type) Can be used to store salivary samples during data collection
E4 sensor Empatica Inc E4 Wristband Rev2 You can use any EDA sensor or company as long as it records EDA and accelerometry
EDA Explorer https://eda-explorer.media.mit.edu/ (open-source) Can be used to identify potential sources of noise that are not necessarily due to movement
Laptops Dell Latitude 3480 They can use any desktop or laptop
Ledalab http://www.ledalab.de/ (open-source) Can be used to separate tonic and phasic EDA signals after following filtration steps
MATLAB https://www.mathworks.com/products/matlab.html (version varies according to updates) To be used for Ledalab, EDA Explorer, and to create customized time-stamping programs.
Salivary Alpha Amylase Enzymatic Kit Salimetrics ‎# 1-1902 For the salivary kits, you should plan to either order the company to analyze your samples and/or go to a molecular biology lab for processing
Salivary Cortisol ELISA Kit Salimetrics # ‎1-3002 For the salivary kits, you should plan to either order the company to analyze your samples and/or go to a molecular biology lab for processing
Testing Divider (Privacy Shields) Amazon #60005 They can use any brand of testing shield as long as they cover the workspace
Web Camera Amazon Logitech c920 They can use any web camera as long as it is HD and 1080p or greater

Riferimenti

  1. William, J. What is an emotion?. Mind. 9 (34), 188-205 (1884).
  2. Pekrun, R., Linnenbrink-Garcia, L., Pekrun, R., Linnenbrink-Garcia, L. Emotions in education: Conclusions and future directions. International handbook of emotions in education. , 659-675 (2014).
  3. Pekrun, R. The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review. 18 (4), 315-341 (2006).
  4. Pekrun, R., Perry, R. P. Control-value theory of achievement emotions. International Handbook of Emotions in Education. , 120-141 (2014).
  5. Pekrun, R., Stephens, E. J., Harris, K. R. Academic emotions. APA Educational Psychology Handbook. , 3-31 (2011).
  6. Bandura, A. . Self-efficacy: The exercise of control. , (1997).
  7. Bandura, A. . Social foundations of thought and action: A social cognitive theory. , (1986).
  8. Bandura, A., Pajares, F., Urdan, T. Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents. , 307-337 (2006).
  9. Jarrell, A., Harley, J. M., Lajoie, S., Naismith, L. Success, failure and emotions: examining the relationship between performance feedback and emotions in diagnostic reasoning. Educational Technology Research and Development. 65 (5), 1263-1284 (2017).
  10. Pekrun, R., Bühner, M., Pekrun, R., Linnenbrink-Garcia, L. Self-report measures of academic emotions. International Handbook of Emotions in Education. , 561-566 (2014).
  11. Nett, U. E., Goetz, T., Hall, N. C. Coping with boredom in school: An experience sampling perspective. Contemporary Educational Psychology. 36 (1), 49-59 (2011).
  12. Azevedo, R. Defining and measuring engagement and learning in science: Conceptual, theoretical, methodological, and analytical issues. Educational Psychologist. 50 (1), 84-94 (2015).
  13. Spangler, G., Pekrun, R., Kramer, K., Hofman, H. Students’ emotions, physiological reactions, and coping in academic exams. Anxiety, Stress, & Coping. 15 (4), 413-432 (2002).
  14. Husman, J., Cheng, K. C., Puruhito, K., Fishman, E. J. Understanding engineering students stress and emotions during an introductory engineering course. American Society of Engineering Education. , (2015).
  15. Vedhara, K., Hyde, J., Gilchrist, I., Tytherleigh, M., Plummer, S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology. 25 (6), 535-549 (2000).
  16. Berenbaum, S. A., Moffat, S., Wisniewski, A., Resnick, S., de Haan, M., Johnson, M. H. Neuroendocrinology: Cognitive effects of sex hormones. The Cognitive Neuroscience of Development: Studies in Developmental Psychology. , 207-210 (2003).
  17. Lundberg, U., Frankenhaeuser, M. Pituitary-adrenal and sympathetic-adrenal correlates of distress and effort. Journal of Psychosomatic Research. 24 (3-4), 125-130 (1980).
  18. Nater, U. M., Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology. 34 (4), 486-496 (2009).
  19. Denson, T., Spanovic, M., Miller, N., Cooper, H. Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychological Bulletin. 135 (6), 823-853 (2009).
  20. Van Stegeren, A. H., Wolf, O. T., Kindt, M. Salivary alpha amylase and cortisol responses to different stress tasks: Impact of sex. International Journal of Psychophysiology. 69 (1), 33-40 (2008).
  21. Benedek, M., Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 190 (1), 80-91 (2010).
  22. Boucsein, W., Backs, R. W., Backs, R. W., Boucsein, W. Engineering psychophysiology as a discipline: Historical and theoretical aspects. Engineering psychophysiology. Issues and applications. , 3-30 (2000).
  23. Boucsein, W., Backs, R. W., Duffy, V. G. The psychophysiology of emotion, arousal, and personality: Methods and models. Handbook of digital human modeling. , 35-38 (2009).
  24. Turpin, G., Shine, P., Lader, M. H. Ambulatory electrodermal monitoring: effects of ambient temperature, general activity, electrolyte media, and length of recording. Psychophysiology. 20, 219-224 (1983).
  25. Posada-Quintero, H. F., et al. Timevarying analysis of electrodermal activity during exercise. PLoS ONE. 13 (6), e0198328 (2018).
  26. Lobstein, T., Cort, J. The relationship between skin temperature and skin conductance activity: Indications of genetic and fitness determinants. Biological Psychology. 7, 139-143 (1978).
  27. Scholander, T. Some measures of electrodermal activity and their relationships as affected by varied temperatures. Journal of Psychosomatic Research. 7, 151-158 (1963).
  28. Schwerdtfeger, A. Predicting autonomic reactivity to public speaking: don’t get fixed on self-report data!. International Journal of Psychophysiology. 52 (3), 217-224 (2004).
  29. Braithwaite, J. J., Watson, D. G., Jones, R., Rowe, M. A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology. 49 (1), 1017-1034 (2013).
  30. Villanueva, I., Valladares, M., Goodridge, W. Use of galvanic skin responses, salivary biomarkers, and self-reports to assess undergraduate student performance during a laboratory exam activity. Journal of Visualized Experiments. (108), e53255 (2016).
  31. Empatica, . E4 wristband from Empatica: User’s manual. Empatica. , 1-32 (2018).
  32. Salimetrics, . Collection methods: Passive drool using the saliva collection aid. Salimetrics Technical Summary. , 1-2 (2018).
  33. Salimetrics, . Collection methods: Passive drool using the saliva collection aid. Salimetrics Technical Summary. , 1-2 (2018).
  34. Salimetrics, . Expanded range high sensitivity salivary cortisol enzyme immunoassay kit. Salimetrics Technical Summary. , 1-21 (2016).
  35. Salimetrics, . Salivary α-amylase kinetic enzyme assay kit. Salimetrics Technical Summary. , 1-17 (2016).
  36. . Innovative Hormone Testing: Saliva Test Specifications, ZRT Laboratory Reports Available from: https://www.zrtlab.com/resources/ (2014)
  37. Call, B., Goodridge, W., Villanueva, I., Wan, N., Jordan, K. Utilizing electroencephalography measurements for comparison of task-specific neural efficiencies: spatial intelligence tasks. Journal of Visualized Experiments. (114), (2016).
  38. Ruel, E. E., Wagner, W. E., Gillespie, B. J. . The practice of survey research: theory and applications. , (2016).
  39. Barrett, P. Euclidean distance: raw, normalized, and double-spaced coefficients. The Technical Whitepaper Series. 6, 1-26 (2005).
  40. Groeneveld, R. A. Influence functions for the coefficient of variation, its inverse, and CV comparisons. Communications in Statistics- Theory and Methods. 40 (23), 4139-4150 (2011).
  41. Tronstad, C., Staal, O. M., Sælid, S., Martinsen, &. #. 2. 1. 6. ;. G. Model-based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 2750-2753 (2015).
  42. Routray, A., Pradhan, A. K., Rao, K. P. A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Transactions on Instrumentation and Measurement. 51 (3), 469-479 (2002).
  43. Benedek, M., Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 190, 80-91 (2010).
  44. Taylor, S., et al. Automatic Identification of Artifacts in Electrodermal Activity Data. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 1934-1937 (2015).
  45. Andreasson, U., et al. A practical guide to immunoassay method validation. Frontiers in Neurology. 6 (179), 1-8 (2015).
  46. Adam, E. K., Kumari, M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology. 34 (10), 1423-1436 (2009).
  47. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., Hellhammer, D. H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 28 (7), 916-931 (2003).
  48. Girden, E. R. . ANOVA: Repeated measures. , (1992).
  49. Raudenbush, S. W., Bryk, A. S. . Hierarchical linear models: Applications and data analysis methods (Vol. 1). , (2002).
  50. Duncan, T. E., Duncan, S. C., Strycker, L. A. . An introduction to latent variable growth curve modeling: Concepts, issues, and application. , (2013).
  51. Mehta, P. D., West, S. G. Putting the individual back into individual growth curves. Psychological Methods. 5 (1), 23-43 (2000).
  52. Khan, M. T. H., Villanueva, I., Vicioso, P., Husman, J. Exploring relationships between electrodermal activity, skin temperature, and performance during engineering exams. , (Accepted).
  53. Christensen, D., Khan, M. T. H., Villanueva, I., Husman, J. Stretched Too Much? A Case Study of Engineering Exam-Related Predicted Performance, Electrodermal Activity, and Heart Rate. , (Accepted).

Play Video

Citazione di questo articolo
Villanueva, I., Husman, J., Christensen, D., Youmans, K., Khan, M. T., Vicioso, P., Lampkins, S., Graham, M. C. A Cross-Disciplinary and Multi-Modal Experimental Design for Studying Near-Real-Time Authentic Examination Experiences. J. Vis. Exp. (151), e60037, doi:10.3791/60037 (2019).

View Video