Descrevemos um método para a caracterização de transportadores de membrana sufrágio movidos a prótons em preparações de vesículas de membrana produzidas pela expressão heterologous em E. coli e lise de células usando uma imprensa francesa.
Vários métodos foram desenvolvidos para caracterizar funcionalmente novos transportadores de membrana. Poliaminas são onipresentes em todos os organismos, mas trocadores de poliamina em plantas não foram identificados. Aqui, descrevemos um método para caracterizar anticarregadores de poliamina usando vesículas de membrana geradaa a partir da lise das células escherichia coli expressando heterologously um antiporter vegetal. Primeiro, nós heterologously expressou AtBAT1 em uma cepa E. coli deficiente em poliamina e transportadores de câmbio arginina. Vesículas foram produzidas usando uma imprensa francesa, purificada pela ultracentrífugae e utilizadas em um ensaio de filtragem de membrana de substratos rotulados para demonstrar a especificidade do substrato do transportador. Estes ensaios demonstraram que atbat1 é um transportador proton-mediado de arginina, γ-aminobutírico ácido (GABA), putrescine e espermidina. A cepa mutante que foi desenvolvida para o ensaio do AtBAT1 pode ser útil para a análise funcional de outras famílias de trocadores de poliamina vegetal e animal. Nós também supor que esta abordagem pode ser usada para caracterizar muitos outros tipos de antiporters, desde que essas proteínas podem ser expressas na membrana celular bacteriana. E. coli é um bom sistema para a caracterização de novos transportadores, uma vez que existem vários métodos que podem ser empregados para mutgenizar os transportadores nativos.
As proteínas envolvidas no tráfico de metabólitos constituem um nível essencial de regulação fisiológica, mas a grande maioria dos transportadores de membranas vegetais ainda não foi funcionalmente caracterizada. Várias estratégias foram implementadas para caracterizar novas proteínas de transporte. Expressão heterologous em organismos modelo como E. coli e células eucarióticas, como levedura, oócitos xenopus, células de mamíferos, células de insetos e células vegetais têm sido usados para determinar sua atividade de transporte1. As células eucarióticas são favorecidas pela expressão de proteínas eucarióticas, pois a composição celular básica, as vias de transdução de sinal, transcrição e máquinas de tradução são compatíveis com as condições nativas.
O fermento tem sido um organismo modelo importante para a caracterização de novas proteínas de transporte em plantas. A primeira proteína de transporte vegetal que foi expressa com sucesso em levedura(Saccharomyces pombe)foi o transportador hexose HUP1 de Chlorella2. Desde então, muitas proteínas de transporte de plantas têm sido funcionalmente caracterizadas usando um sistema de expressão de levedura. Estes incluem, transportadores de açúcar de plantas (SUC1 e SUC23,VfSUT1 e VfSTP14)e os transportadores de auxina (AUX1 e PIN5). As desvantagens de utilizar levedura para expressar proteínas vegetais podem incluir atividade prejudicada de proteínas localizadas com plastide, pois o fermento não tem essa organela, a segmentação inativa6,e a formação de agregados mal dobrados e a ativação de respostas ao estresse em levedura devido à superexpressão das proteínas da membrana7,8,9.
A expressão heterologous de proteínas do transporte em oocytes de Xenopus foi amplamente utilizada para a caracterização electrophysiological dos transportadores10. As primeiras proteínas de transporte de plantas caracterizadas usando expressão heterologous em oócitos Xenopus foram o canal Arabidopsis potassium KAT110 e o transportador de hexose Arabidopsis STP111. Desde então, os oócitos Xenopus têm sido empregados para caracterizar muitas proteínas de transporte de plantas, como transportadores de membrana plasmática12,transporte de surose vacuolar SUT413 e transportador de malado vacuolar ALMT914. Uma importante limitação dos oócitos Xenopus para ensaios de transporte é que a concentração de metabólitos intracelulares não pode ser manipulada1. Além disso, o conhecimento profissional é necessário para preparar os oócitos Xenopus e a variabilidade dos lotes de oócito é difícil de controlar.
A expressão heterologous no organismo modelo E. coli é um sistema ideal nos termos da caracterização de proteínas novas do transporte da planta. Com um genoma totalmente sequenciado15,as características moleculares e fisiológicas de E. coli são bem conhecidas. Ferramentas e técnicas moleculares estão bem estabelecidas16. Além disso, vetores de expressão diferentes, cepas não patogênicas e mutantes estão disponíveis17,18,19. Além disso, E. coli tem uma alta taxa de crescimento e pode ser facilmente cultivada em condições de laboratório. Muitas proteínas podem ser facilmente expressas e purificadas em quantidades elevadas em E. coli9. Quando as proteínas não podem ser amenizadas diretamente nos sistemas celulares, a reconstituição de proteínas em lipossomos também tem sido uma inovação bem sucedida, embora desafiadora, para a caracterização de proteínas de membrana purificadas. Caracterização funcional das proteínas de transporte mitocondrial de plantas, incluindo transportadores solute, como transportadores de fosfato em soja, milho, arroz e arabidopsia, portador de dicarboxil-tricarboxilato em Arabidopsis foram realizadas usando este sistema modelo20,21. No entanto, proteínas recombinantes da proteína de tomate SICAT9 foram encontradas não funcionais em experimentos de reconstituição, e outros membros da família cat transportador foram encontrados para ser não funcional em xenopus oocyte ensaios22. Assim, são necessárias ferramentas moleculares adicionais para a caracterização dos transportadores de membrana.
Cinco sistemas de transporte de poliamina são encontrados em E. coli23. Eles incluem dois transportadores ABC mediando a captação de espermidina e putrescine, um trocador putrescine/ornithine, um trocador de cadaverina/lysine, um exportador de espermidina e um importador putrescine. O trocador de putrescine PotE foi originalmente caracterizado usando um ensaio vesícula, onde de dentro para fora vesículas foram preparadas por células de lise com uma imprensa francesa e medindo a captação de putrescina radiografada nas vesículas em troca de orníntes24. Os ensaios da vesícula também foram usados para caracterizar um transportador de cálcio, que mediava o transporte de cálcio em resposta a um gradiente de prótons25. Esses experimentos nos levaram a desenvolver uma estratégia para a caracterização de outros trocadores de poliamina. Primeiro criamos uma cepa de e. coli deficiente em trocadores de PotE e CadB. Aqui, demonstramos a caracterização funcional de um antiporter de poliamina vegetal por expressão heterlogous na cepa e. coli modificada, geração de vesículas de membrana usando uma imprensa francesa e ensaios radiografados.
No presente estudo, descrevemos um método para a caracterização de um antiporter, primeiro expressando a proteína em E. coli e, em seguida, gerando vesículas de membrana, de modo que a proteína expressa heterologously pode ser amenizado em um sistema livre de células. Além de equipamentos encontrados na maioria dos laboratórios de biologia molecular, esta estratégia requer o uso de uma imprensa francesa, uma ultracentrífuga e acesso a uma instalação para realizar ensaios de radioisótopos.
<p cl…The authors have nothing to disclose.
O suporte para este projeto veio da FACULDADE de Pós-Graduação BGSU e do Escritório de Programas e Pesquisapatrocinados da BGSU.
2-mercaptoethanol | Sigma-Aldrich | M6250 | |
3H-putrescine | PerkinElmer | NET185001MC | |
3H-spermidine | PerkinElmer | NET522001MC | |
4-chloro-1-naphthol | Sigma-Aldrich | C8890 | |
14C arginine | Moravek Inc. | MC137 | |
Arginine | Sigma-Aldrich | A-5006 | |
Anti-His (C-term)-HRP antibody | ThermoFisher | R931-25 | Detects the C-terminal polyhistidine (6xHis) tag, requires the free carboxyl group for detection |
Arabinose | Sigma-Aldrich | A3256 | |
BCA protein assay kit | ThermoFisher | 23227 | Pierce BCA protein asay kit. |
Bromophenol blue | Bio-Rad | 161-0404 | |
Carboxypeptidase B | Sigma-Aldrich | C9584-1mg | |
Centrifuge | Sorvall | SS-34 fixed angle rotor and GA-6 fixed angle rotor | |
Dounce tissue grinder | LabGenome | 7777-7 | Corning 7777-7 pyrex homogenizer with pour spout. |
Ecoscint-H | National Diagnostics | LS275 | scintillation cocktail |
EDTA | Sigma-Aldrich | ||
Filtration manifold | Hoefer | FH225V | |
French Pressure Cell | Glen Mills | FA-080A120 | |
GABA | Sigma-Aldrich | A2129 | |
Glutamate | Sigma-Aldrich | G6904 | |
Glycerol | |||
GraphPad Prism software | http://www.graphpad.com/prism/Prism.htm | ||
Hydrogen peroxide | KROGER | ||
Potassium Chloride | J.T. Baker | 3040-01 | |
Liquid scintillation counter | Beckman | LS-6500 | |
Maleate | Sigma-Aldrich | M0375 | |
Nanodrop | ThermoFisher | ||
Nitrocellulose membrane filters | Merck Millipore | hawp02500 | 0.45 µM |
PCR clean up kit | Genscript | QuickClean II | |
Potassium Phosphate dibasic | ThermoFisher | P290-500 | |
putrescine | fluka | 32810 | |
Potassium Phosphate monobasic | J.T.Baker | 4008 | |
Spermidine | Sigma-aldrich | S2501 | |
Strains :E. coli ΔpotE740(del)::kan, ΔcadB2231::Tn10 | This manuscript | Available upon request. | Strain is deficient in the PotE and CadB polyamine exchangers. |
Tris-base | Research Products | T60040-1000 | |
Ultracentrifuge | Sorvall MTX 150 | 46960 | Thermo Fisher S150-AT fixed angle rotor |
Ultracentrifuge tubes | ThermoFisher | 45237 | Centrifuge tubes for S150-AT rotor |
Vector: pBAD-DEST49 | ThermoFisher | Gateway expression vector for E. coli |