Summary

Fabricating van der Waals Heterostructures with Precise Rotational Alignment

Published: July 05, 2019
doi:

Summary

In this work we describe a technique that is used to create new crystals (van der Waals heterostructures) by stacking ultrathin layered 2D materials with precise control over position and relative orientation.

Abstract

In this work we describe a technique for creating new crystals (van der Waals heterostructures) by stacking distinct ultrathin layered 2D materials. We demonstrate not only lateral control but, importantly, also control over the angular alignment of adjacent layers. The core of the technique is represented by a home-built transfer setup which allows the user to control the position of the individual crystals involved in the transfer. This is achieved with sub-micrometer (translational) and sub-degree (angular) precision. Prior to stacking them together, the isolated crystals are individually manipulated by custom-designed moving stages that are controlled by a programmed software interface. Moreover, since the entire transfer setup is computer controlled, the user can remotely create precise heterostructures without coming into direct contact with the transfer setup, labeling this technique as “hands-free”. In addition to presenting the transfer set-up, we also describe two techniques for preparing the crystals that are subsequently stacked.

Introduction

Research in the burgeoning field of two-dimensional (2D) materials began after researchers developed a technique which enabled the isolation of graphene1,2,3 (an atomically flat sheet of carbon atoms) from graphite. Graphene is a member of a larger class of layered 2D materials, also referred to as van der Waals materials or crystals. They have strong covalent intralayer bonding and weak van der Waals interlayer coupling. Therefore, the technique for isolating graphene from graphite can also be applied to other 2D materials where one can break the weak interlayer bonds and isolate single layers. One key development in the field was the demonstration that just as the van der Waals bonds holding adjacent layers of two-dimensional materials together can be broken, they can also be put back together2,4. Therefore, crystals of 2D materials can be created by controllably stacking together layers of 2D materials with distinct properties. This spurred a great deal of interest, as materials previously inexistent in nature can be created with the goal of either uncovering formerly inaccessible physical phenomena4,5,6,7,8,9 or developing superior devices for technology applications. Therefore, having precise control over stacking 2D materials has become one of the main goals in the research field10,11,12.

In particular, the twist angle between adjacent layers in van der Waals heterostructures was shown to be an important parameter for controlling material properties13. For example, at some angles, the introduction of a relative twist between adjacent layers can effectively electronically decouple the two layers. This was studied both in graphene14,15 as well as in transition metal dichalcogenides16,17,18,19. More recently, it was surprisingly found that it can also alter the state of matter of these materials. The discovery that bilayer graphene oriented at a “magic angle” behaves as a Mott insulator at low temperatures and even a superconductor when the electron density is properly tuned has sparked great interest and a realization of the importance of the angular control when fabricating layered van der Waals heterostructures13,20,21.

Motivated by the scientific opportunities opened up by the idea of tuning the properties of novel van der Waals materials by adjusting the relative orientation between the layers, we present a home-built instrument along with the procedure to create such structures with angular control.

Protocol

1. Instrumentation for the transfer procedure In order to visualize the transfer process, utilize an optical microscope that can operate under bright-field illumination. Since the typical sizes of the 2D crystals are 1–500 µm2, equip the microscope with 5x, 50x, and 100x long working distance objectives. The microscope must also be equipped with a camera that connects to a computer (Figure 1a). Use separate manipulators to individually control the …

Representative Results

To illustrate the outcomes and effectiveness of our procedure we present a sequence of angle-controlled stacks of rhenium disulfide (ReS2) thin crystals. To emphasize that the described method can also be applied to atomically thin layers, we also exemplify the construction of two relatively twisted monolayers of molybdenum disulfide (MoS2). To demonstrate the angular alignment capabilities of the transfer …

Discussion

The home-built transfer setup presented here offers a method for building novel layered materials with both lateral and rotational control. Compared to other solutions described in the literature10,25, our system does not require complex infrastructure, yet it achieves the goal of controlled alignment of 2D crystals.

The most critical step in the procedure is that of aligning and placing the top crystal in contact with the bottom one. …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge funding from University of Ottawa and NSERC Discovery grant RGPIN-2016-06717 and NSERC SPG QC2DM.

Materials

5X objective lens Nikon Metrology MUE12050 23.5 mm working distance and 0.15 numerical aperture
50X objective lens Nikon Metrology MUE21500 19 mm working distance and 0.4 numerical aperture
100X objective lens Nikon Metrology MUE21900 4.5 mm working distance and 0.8 numerical aperture
Acetone Sigma-Aldrich 270725 Purity ≥99.90%
Adhesive tape Ultron Systems, Inc.
Anisole MicroChem
Atomic force microscope Bruker Dimension Icon We typicall use the ScanAsyst mode
Bottom stage rotation manipulator Zaber Technologies X-RSW60A-PTB2 360° travel with step size of 4.091 μrad
Bottom stage X manipulator Zaber Technologies X-LSM025A-PTB2 25 mm travel with step size of 47.625 nm
Bottom stage Y manipulator Zaber Technologies X-LSM025A-PTB2 25 mm travel with step size of 47.625 nm
Bottom stage Z manipulator Zaber Technologies X-VSR40A-KX14A 40 mm travel with step size of 95.25 nm
Isopropanol Sigma-Aldrich 563935 Purity 99.999%
LabVIEW software National Instruments
Macor McMaster-Carr 8489K238
Microscope camera Zeiss 426555-0000-000 5 megapixel, 47 fps live frame rate, exposure time of 100 μs – 2 s, color camera
Molybdenum disulfide (MoS2) HQ Graphene
Optical breadboard Thorlabs, Inc. MB4545/M
Optical microscope Nikon Metrology LV150N
Oxygen plasma etcher Plasma Etch, Inc. PE-50
PDMS stamp Gel-Pak PF-20-X4
PMMA 950 A6 MichroChem Corp. M230006 0500L1GL
Polypropylene carbonate Sigma-Aldrich 389021-100g
PVA Partall #10 Composites Canada
Rhenium disulfide (ReS2) HQ Graphene
Si/SiO2 substrate Nova Electronics Materials HS39626-OX
Spin coater Laurell Technologies WS-650-23
Temperature controller Auber Instruments SYL-23X2-24 Controls the temperature of the bottom stage via a J type thermocouple
Top stage controller unit Mechonics CF.030.0003
Top stage X manipulator Mechonics MS.030.1800 18 mm travel with step size of 11 nm
Top stage Y manipulator Mechonics MS.030.1800 18 mm travel with step size of 11 nm
Top stage Z manipulator Mechonics MS.030.3000 30 mm travel with step size of 11 nm
Ultrasonic bath Elma Schmidbauer GmbH Elmasonic P 30 H

Riferimenti

  1. Novoselov, K. S., et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 306 (5696), 666 (2004).
  2. Novoselov, K. S., et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. 102 (30), 10451 (2005).
  3. Zhang, Y., Tan, Y. -. W., Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 438, 201 (2005).
  4. Geim, A. K., Van Grigorieva, I. V. Van der Waals heterostructures. Nature. 499, 419 (2013).
  5. Song, J. C. W., Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nature Nanotechnology. 13 (11), 986-993 (2018).
  6. Jin, C., et al. Ultrafast dynamics in van der Waals heterostructures. Nature Nanotechnology. 13 (11), 994-1003 (2018).
  7. Rivera, P., et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology. 13 (11), 1004-1015 (2018).
  8. Lu, C. -. P., et al. Local, global, and nonlinear screening in twisted double-layer graphene. Proceedings of the National Academy of Sciences of the United States of America. , 201606278 (2016).
  9. Luican-Mayer, A., Li, G., Andrei, E. Y. Atomic scale characterization of mismatched graphene layers. Journal of Electron Spectroscopy and Related Phenomena. 219, 92-98 (2017).
  10. Frisenda, R., et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chemical Society Reviews. 47 (1), 53-68 (2018).
  11. Ribeiro-Palau, R., et al. Twistable electronics with dynamically rotatable heterostructures. Science. 361 (6403), 690-693 (2018).
  12. Kim, K., et al. van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Letters. 16 (3), 1989-1995 (2016).
  13. Cao, Y., et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 556 (7699), 43 (2018).
  14. Luican, A., et al. Single-layer behavior and its breakdown in twisted graphene layers. Physical review letters. 106 (12), 126802 (2011).
  15. Li, G., et al. Observation of Van Hove singularities in twisted graphene layers. Nature Physics. 6 (2), 109 (2010).
  16. Castellanos-Gomez, A., van der Zant, H. S. J., Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Research. 7 (4), 572-578 (2014).
  17. van der Zande, A. M., et al. Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist. Nano Letters. 14 (7), 3869-3875 (2014).
  18. Huang, S., et al. Probing the Interlayer Coupling of Twisted Bilayer MoS2 Using Photoluminescence Spectroscopy. Nano Letters. 14 (10), 5500-5508 (2014).
  19. Liu, K., et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications. 5, 4966 (2014).
  20. Cao, Y., et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 556, 80 (2018).
  21. . Tuning superconductivity in twisted bilayer graphene Available from: https://arxiv.org/abs/1808.07865 (2018)
  22. Blake, P., et al. Making graphene visible. Applied Physics Letters. 91 (6), 063124 (2007).
  23. Lin, Y. -. C., et al. Single-Layer ReS2: Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. ACS Nano. 9 (11), 11249-11257 (2015).
  24. Chenet, D. A., et al. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Letters. 15 (9), 5667-5672 (2015).
  25. Masubuchi, S., et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nature Communications. 9 (1), 1413 (2018).
  26. Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M. S. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America. 112 (15), 4523-4530 (2015).
  27. Huang, B., et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546, 270 (2017).
  28. Kim, H. H., et al. One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. Nano Letters. 18 (8), 4885-4890 (2018).

Play Video

Citazione di questo articolo
Boddison-Chouinard, J., Plumadore, R., Luican-Mayer, A. Fabricating van der Waals Heterostructures with Precise Rotational Alignment. J. Vis. Exp. (149), e59727, doi:10.3791/59727 (2019).

View Video