In this work we describe a technique that is used to create new crystals (van der Waals heterostructures) by stacking ultrathin layered 2D materials with precise control over position and relative orientation.
In this work we describe a technique for creating new crystals (van der Waals heterostructures) by stacking distinct ultrathin layered 2D materials. We demonstrate not only lateral control but, importantly, also control over the angular alignment of adjacent layers. The core of the technique is represented by a home-built transfer setup which allows the user to control the position of the individual crystals involved in the transfer. This is achieved with sub-micrometer (translational) and sub-degree (angular) precision. Prior to stacking them together, the isolated crystals are individually manipulated by custom-designed moving stages that are controlled by a programmed software interface. Moreover, since the entire transfer setup is computer controlled, the user can remotely create precise heterostructures without coming into direct contact with the transfer setup, labeling this technique as “hands-free”. In addition to presenting the transfer set-up, we also describe two techniques for preparing the crystals that are subsequently stacked.
Research in the burgeoning field of two-dimensional (2D) materials began after researchers developed a technique which enabled the isolation of graphene1,2,3 (an atomically flat sheet of carbon atoms) from graphite. Graphene is a member of a larger class of layered 2D materials, also referred to as van der Waals materials or crystals. They have strong covalent intralayer bonding and weak van der Waals interlayer coupling. Therefore, the technique for isolating graphene from graphite can also be applied to other 2D materials where one can break the weak interlayer bonds and isolate single layers. One key development in the field was the demonstration that just as the van der Waals bonds holding adjacent layers of two-dimensional materials together can be broken, they can also be put back together2,4. Therefore, crystals of 2D materials can be created by controllably stacking together layers of 2D materials with distinct properties. This spurred a great deal of interest, as materials previously inexistent in nature can be created with the goal of either uncovering formerly inaccessible physical phenomena4,5,6,7,8,9 or developing superior devices for technology applications. Therefore, having precise control over stacking 2D materials has become one of the main goals in the research field10,11,12.
In particular, the twist angle between adjacent layers in van der Waals heterostructures was shown to be an important parameter for controlling material properties13. For example, at some angles, the introduction of a relative twist between adjacent layers can effectively electronically decouple the two layers. This was studied both in graphene14,15 as well as in transition metal dichalcogenides16,17,18,19. More recently, it was surprisingly found that it can also alter the state of matter of these materials. The discovery that bilayer graphene oriented at a “magic angle” behaves as a Mott insulator at low temperatures and even a superconductor when the electron density is properly tuned has sparked great interest and a realization of the importance of the angular control when fabricating layered van der Waals heterostructures13,20,21.
Motivated by the scientific opportunities opened up by the idea of tuning the properties of novel van der Waals materials by adjusting the relative orientation between the layers, we present a home-built instrument along with the procedure to create such structures with angular control.
The home-built transfer setup presented here offers a method for building novel layered materials with both lateral and rotational control. Compared to other solutions described in the literature10,25, our system does not require complex infrastructure, yet it achieves the goal of controlled alignment of 2D crystals.
The most critical step in the procedure is that of aligning and placing the top crystal in contact with the bottom one. …
The authors have nothing to disclose.
The authors acknowledge funding from University of Ottawa and NSERC Discovery grant RGPIN-2016-06717 and NSERC SPG QC2DM.
5X objective lens | Nikon Metrology | MUE12050 | 23.5 mm working distance and 0.15 numerical aperture |
50X objective lens | Nikon Metrology | MUE21500 | 19 mm working distance and 0.4 numerical aperture |
100X objective lens | Nikon Metrology | MUE21900 | 4.5 mm working distance and 0.8 numerical aperture |
Acetone | Sigma-Aldrich | 270725 | Purity ≥99.90% |
Adhesive tape | Ultron Systems, Inc. | ||
Anisole | MicroChem | ||
Atomic force microscope | Bruker | Dimension Icon | We typicall use the ScanAsyst mode |
Bottom stage rotation manipulator | Zaber Technologies | X-RSW60A-PTB2 | 360° travel with step size of 4.091 μrad |
Bottom stage X manipulator | Zaber Technologies | X-LSM025A-PTB2 | 25 mm travel with step size of 47.625 nm |
Bottom stage Y manipulator | Zaber Technologies | X-LSM025A-PTB2 | 25 mm travel with step size of 47.625 nm |
Bottom stage Z manipulator | Zaber Technologies | X-VSR40A-KX14A | 40 mm travel with step size of 95.25 nm |
Isopropanol | Sigma-Aldrich | 563935 | Purity 99.999% |
LabVIEW software | National Instruments | ||
Macor | McMaster-Carr | 8489K238 | |
Microscope camera | Zeiss | 426555-0000-000 | 5 megapixel, 47 fps live frame rate, exposure time of 100 μs – 2 s, color camera |
Molybdenum disulfide (MoS2) | HQ Graphene | ||
Optical breadboard | Thorlabs, Inc. | MB4545/M | |
Optical microscope | Nikon Metrology | LV150N | |
Oxygen plasma etcher | Plasma Etch, Inc. | PE-50 | |
PDMS stamp | Gel-Pak | PF-20-X4 | |
PMMA 950 A6 | MichroChem Corp. | M230006 0500L1GL | |
Polypropylene carbonate | Sigma-Aldrich | 389021-100g | |
PVA Partall #10 | Composites Canada | ||
Rhenium disulfide (ReS2) | HQ Graphene | ||
Si/SiO2 substrate | Nova Electronics Materials | HS39626-OX | |
Spin coater | Laurell Technologies | WS-650-23 | |
Temperature controller | Auber Instruments | SYL-23X2-24 | Controls the temperature of the bottom stage via a J type thermocouple |
Top stage controller unit | Mechonics | CF.030.0003 | |
Top stage X manipulator | Mechonics | MS.030.1800 | 18 mm travel with step size of 11 nm |
Top stage Y manipulator | Mechonics | MS.030.1800 | 18 mm travel with step size of 11 nm |
Top stage Z manipulator | Mechonics | MS.030.3000 | 30 mm travel with step size of 11 nm |
Ultrasonic bath | Elma Schmidbauer GmbH | Elmasonic P 30 H |