This protocol describes a set of methods to identify the cell-type specific functional connectivity of long-range inputs from distant brain regions using optogenetic stimulations in ex vivo brain slices.
Knowledge of cell-type specific synaptic connectivity is a crucial prerequisite for understanding brain-wide neuronal circuits. The functional investigation of long-range connections requires targeted recordings of single neurons combined with the specific stimulation of identified distant inputs. This is often difficult to achieve with conventional and electrical stimulation techniques, because axons from converging upstream brain areas may intermingle in the target region. The stereotaxic targeting of a specific brain region for virus-mediated expression of light-sensitive ion channels allows selective stimulation of axons originating from that region with light. Intracerebral stereotaxic injections can be used in well-delimited structures, such as the anterior thalamic nuclei, in addition to other subcortical or cortical areas throughout the brain.
Described here is a set of techniques for precise stereotaxic injection of viral vectors expressing channelrhodopsin in the mouse brain, followed by photostimulation of axon terminals in the brain slice preparation. These protocols are simple and widely applicable. In combination with whole-cell patch clamp recording from a postsynaptically connected neuron, photostimulation of axons allows the detection of functional synaptic connections, pharmacological characterization, and evaluation of their strength. In addition, biocytin filling of the recorded neuron can be used for post-hoc morphological identification of the postsynaptic neuron.
Defining connectivity between brain regions is necessary to understand neural circuits. Classical anatomical tracing methods allow establishing interregional connectivity, and lesion studies help to understand the hierarchical organization of information flow. For example, brain circuits for spatial orientation and head direction signaling involve the directional flow of information from the thalamus to the presubiculum. This has been demonstrated by lesion studies of antero-dorsal thalamic nuclei (ADN) that degrade the head direction signal in the downstream dorsal presubiculum, as well as the parahippocampal grid cell signal1,2.
The functional connectivity between brain areas is more difficult to establish at a cellular and subcellular level. In the hippocampus, a highly organized anatomy allows to investigate pathway-specific synaptic connections using electrical simulation in the slice preparation. Stimulation electrodes placed in stratum radiatum of CA1 can be used to specifically stimulate Schaffer collateral input from CA33. Stimulating electrodes placed in stratum lacunosum moleculare of CA1 will activate the perforant path input to CA14,5. Electrical stimulation activates neurotransmitter release from axon terminals; however, it activates neurons with somata near the stimulation site as well as axons of passage. It is therefore of limited use for studying afferents from defined brain regions when fibers of different regions of origin intermingle in the target structure, as is typically the case in the neocortex.
Neurons may also be stimulated with light. Optical methods include the photoactivation of caged glutamate, which can be combined with one- or two-photon laser scanning. Multiple closely spaced sites may be stimulated sequentially, with no mechanical damage to the tissue6. This has been successfully used to map synaptic receptors as well as activate individual neurons7. While glutamate uncaging can be used for local circuit analysis, it does not allow for specific activation of long-range inputs.
A method of choice for the investigation of long-range connectivity in neuronal circuits is the use of virus-mediated channelrhodopsin expression. Using in vivo stereotaxic injections as described here, the expression of light-gated ion channels can be targeted and spatially restricted to a desired brain region. In this way, channelrhodopsins are effective for mapping excitatory or inhibitory connectivity from one region to its target. Transfected axons terminals may be stimulated with light in a brain slice preparation, and patch-clamp recordings as a read-out allow examination of the functions and strengths of specific circuit components in the brain8. The optogenetic approach combined with stereotaxic injection of a virus offers unprecedented specificity and genetic control9. Stimulating with light additionally allows for both high temporal and spatial precision10,11.
The presubiculum is a six-layered cortical structure at the transition of the hippocampus and the para-hippocampal formation12,13. It receives important synaptic input from the ADN11 but also from several other cortical and subcortical regions14. Thus, the selective stimulation of thalamic axons terminals within a presubicular slice is not possible with electrical stimulation nor glutamate uncaging. Described in this protocol are methods to determine functional connectivity between brain regions (ADN and presubiculum) using precise stereotaxic injections of viral vectors expressing light-gated channels. Also described is the photostimulation of axons terminals of projecting neurons in their target region, coupled with whole-cell patch-clamp recordings of post-synaptic neurons in the brain slice preparation.
All procedures were performed in accordance with the European Community Council Directive (2010/63/EU) and approved by the ethics committee of Paris Descartes University. The experimenter must obtain authorization for the procedure to comply with local regulations.
1. Planning of the experiment
2. Stereotaxic surgery
3. Solutions for acute slice recordings and fixation
4. Preparation of brain slices
5. Whole-cell patch-clamp recording
6. Biocytin revelation
The procedure presented here was used to express a blue light-sensitive channelrhodopsin (Chronos) fused to GFP in the antero-dorsal nucleus of the thalamus (ADN), by stereotaxic injection of anterograde adeno-associated virus. The stereotaxic coordinates were determined according to a mouse brain atlas and tested by injecting 200 nL of fluorescent tracer fluoro-ruby. The animal was sacrificed 10 min after the injection, and the brain was extracted and fixated overnight. Coronal brain sections were prepared to examine the injection site, which was correctly placed in and limited to ADN (Figure 1A,B).
In order to express Chronos-GFP in neurons of ADN, we injected 300 nL of AAV5.Syn.Chronos-GFP.WPRE.bGH. Three weeks after the injection, acute horizontal brain slices were prepared. Figure 1C shows a brain slice containing the thalamic injection site in the right hemisphere, with GFP expression in green. Upon inspection with an epi-fluorescence microscope equipped with a 4x objective, GFP labeled thalamic axons were observed in the presubiculum (Figure 1C,D). It was noted that thalamic axons densely innervated the superficial layers I and III of the presubiculum (Figure 1D).
The activity of presubicular neurons in layer III was recorded in the whole-cell patch-clamp configuration. Hyperpolarizing and depolarizing current steps were applied while recording the membrane potential variations (Figure 2A). Data was stored on a computer for later offline analysis of active and passive membrane properties. Presubicular layer III principal cells typically possessed a negative resting potential close to -63 mV and required depolarizing current injections to drive the membrane potential to firing threshold. A full description of their intrinsic properties has been published11.
Stimulating ADN axon terminals expressing Chronos-GFP elicited excitatory post-synaptic potentials (EPSPs) in presubicular layer III principal cells in current clamp mode (Figure 2B). Depending on light intensity, the EPSPs could reach action potential threshold. Postsynaptic responses were also observed in voltage-clamp mode as excitatory post-synaptic currents (EPSCs) were elicited (Figure 2C). Onset latencies of EPSCs evoked by light stimulations were short (median, 1.4 ms10), indicating a direct synaptic contact between thalamic axons and layer III presubicular neurons. Persisting EPSCs in TTX-4AP condition confirmed this monosynaptic activation. It is noteworthy that these cells responded reliably to the light stimulations of afferent axons with a regular firing pattern.
Figure 1: Stereotaxic injection in the anterodorsal thalamic nucleus (ADN). (A) Schematic representation of the injection. (B) Injection site confirmation with fluoro-ruby in a coronal section. Inset indicates antero-dorsal level and distance from bregma. (C) Horizontal slice following AAV-Chronos-GFP injection in the thalamus. The axonal projections to the ipsilateral presubiculum should be noted. An incision on the left side of the slice (indicated by a black triangle) marks the contralateral hemisphere. (B, C) Scale bar 1 mm. (D) Magnified view of inset in (C) with ADN projections to the presubicular superficial layers. Scale bar = 100 µm. Please click here to view a larger version of this figure.
Figure 2: Presubicular layer III neuron: intrinsic properties, response to light stimulation of thalamic afferents, and post-hoc revelation of cell morphology. (A) Firing pattern and membrane potential variations of layer III neuron for hyperpolarizing and depolarizing current steps. (B, C) Responses of layer III neuron to 2 ms light stimulations (blue bars) of thalamic axons recorded in (B) current-clamp and (C) voltage-clamp modes. (D, E) Layer III pyramidal neuron (white, indicated by filled yellow triangle) surrounded by thalamic axons expressing Chronos-GFP (green) in presubicular superficial layers with DAPI staining (blue) in horizontal slice imaged with an epifluorescence microscope (D, scale bar = 100 µm) and confocal microscope at a high magnification (E, scale bar = 50 µm). The cell in (A) is indicated with filled yellow triangles. A second, partially filled neuron is present in this slice indicated with empty yellow triangles. Please click here to view a larger version of this figure.
In vivo viral injection to express light-sensitive opsins in a defined brain area is a choice method for the optogenetic analysis of long-range functional connectivity10,11,17,18. Stereotaxic injections offer the possibility to precisely target a specific area of the brain. The coexpression of an opsin with a fluorescent reporter conveniently allows evaluation of the successful expression and confirmation of the precise injection site. The use of AAV serotype 2/5 typically restricts expression to the targeted brain region. In this way, a restricted population of neurons is transfected, expressing light-sensitive ion channels in their cell bodies and axon terminals. In subsequent ex vivo slice experiments, it is possible to stimulate these axon terminals with light pulses directly in their target area, while reading out successful synaptic transmission via patch-clamp recording of a post-synaptically connected neuron. The above protocol is robust and convenient, and some additional notes may help performance of successful experiments.
Different types of anesthesia may be used. Described here is the intraperitoneal injection of a ketamine-xylazine combination as an easy-to-use, short-term anesthesia with convenient analgesia19. The depth and duration of anesthesia may vary to some extent. In some cases, it may be necessary to inject another half-dose of ketamine-xylazine during the protocol. Isoflurane anesthesia can be a good alternative to induce more quickly and better control the depth of anesthesia. Coordinates of injection sites may be determined with the help of a mouse brain atlas. In practice, coordinates need to be tested and adjusted, if necessary.
Clean working conditions are also key. It is recommended to use disposable protective gear, including gloves, a mob cap, and a lab coat. When positioning the animal in the stereotaxic frame, special attention should be paid to the comfort of the animal, which will greatly improve efficiency of the anesthesia. The body of the animal should be aligned with the head and neck. The most critical step in positioning the animal and before craniotomy is adjustment of the bregma-lambda axis. Especially when targeting deep brain structures, even a small deviation will generate errors when lowering the injection needle into the brain. In some cases, one may deliberately choose and calculate an oblique needle trajectory.
The injection volume is a determinant factor for obtaining precisely localized opsin expression. A small volume is ideal to privilege a tightly restricted transfection zone. Higher volumes may be useful to cover the full extent of a large target area. If a large area needs to be covered, such as the septum18, it may be helpful to place several small injections with a range of neighboring coordinates. The interval until the ex vivo electrophysiological recording is also critical. A minimum time for full expression is necessary. While 3 weeks seem to be an optimal delay for these experiments11, the necessary delay may vary depending on the virus, its serotype, and the distance to the postsynaptic brain region.
The approach described here is even more powerful when combined with injections in transgenic animals. Previous work has exploited different mouse lines for subtypes of GABAergic neurons, in order to specifically target either PV- or SST-expressing interneurons for patch-clamp recordings20. Simultaneous double recording of neighboring PV and pyramidal neurons or SST and pyramidal neurons then allows comparison of strengths of long-range inputs between two neuron types11. This yields results that are standardized with respect to one neuron type. This standardization is particularly important in cases where the expression levels of opsins vary between different animals or different slices.
Slice health is essential for high-quality patch-clamp recordings. Constant oxygenation of the slices is crucial, and a slow cutting speed significantly improves slice surface quality. A slice thickness of 300 µm preserves, to some extent, the microcircuit integrity in horizontal presubicular sections, including pyramidal neurons with their cell bodies, dendritic and local axonal ramifications, and local synaptic connections. The type of light-gated channels chosen to induce activation of afferent fibers will greatly influence the stimulation parameters (duration, light intensity). Chronos is a blue light-sensitive channelrhodopsin, and a broad range of illumination wavelengths can be used for activation (peak sensitivity around 500 nm, even with minimal light intensity of 0.05 mW/mm2, also activated at 405 nm, and up to 530 nm21). Furthermore, Chronos has fast kinetics properties in comparison to classical ChR2, which enables high frequency stimulations and reliable activation of long-range projections22. In combination with the expression of Chrimson, a red-shifted opsin variant, the independent optical excitation of distinct neural populations becomes feasible.
The authors have nothing to disclose.
We thank Bertrand Mathon, Mérie Nassar, Li-Wen Huang, and Jean Simonnet for their help in the development of previous versions of the stereotaxic injection protocol and Marin Manuel and Patrice Jegouzo for technical help. This work was supported by the French Ministry for Education and Research (L. R., L. S.), Centre National des Etudes Spatiales (M. B.), and Agence Nationale de la Recherche Grant ANR-18-CE92-0051-01 (D. F.).
0.5 mm bur | Harvard Apparatus | 724962 | |
10 µL Hamilton syringe | Hamilton | 1701 RN – 7653-01 | |
10X PBS solution | Thermofisher Scientific | AM9624 | text |
36% PFA | Sigma-Aldrich | F8775 | |
470 nm LED | Cairn Research | P1105/470/LED DC/59022m | use with matched excitation filter 470/40x and emission filter for GFP |
AAV5.Syn.Chronos-GFP.WPRE.bGH | Penn Vector Core | AV-5-PV3446 | lot V6026R, qTiter GC/ml 4.912e12, ddTiter GC/ml 2.456e13 |
All chemicals | Sigma | ||
Bath temperature controler | Luigs & Neumann | SM7 | Set at 34°C |
beveled metal needle | Hamilton | 7803-05 | 33 gauge, 13mm, point style 4-20° |
Big scissors | Dahle Allround | 50038 | |
Biocytin | Sigma | B4261 | final 1-3 mg/ml |
Borosilicate Capillaries | Havard Apparatus | GC150-10 | 1.5 mm outer, 0.86 inner diameter |
Brown Flaming electrode puller | Sutter Instruments | P-87 | |
BupH Phosphate Buffered Saline pack | Thermofisher Scientific | 28372 | |
butterfly needle for perfusion | Braun | Venofix A | 24G |
CCD Camera | Andor | DL-604M | |
Confocal Microscope | Zeiss | LSM710 | 20X |
curved forceps | FST | 11011-17 | |
CY5 configuration (confocal) | Helium-Neon 633nm (5,0 mW) laser; Mirror: MBS 488/561/633 | ||
CY5 configuration (epifluo) | Nikon/Chroma | Fluorescent light (Intensilight); Excitation filter: BP645/30; Dichroic mirror: 89100 BS ; Emission filter: BP705/72 | |
DAPI | Sigma | D9542 | |
DAPI configuration (epifluo) | Nikon/Chroma | Fluorescent light (Intensilight); Cube: Semrock Set DAPI-5060C-000-ZERO (Excitation: BP 377/50; Mirror: BS 409; Emission: BP 447/60) | |
Digidata 1440A | Axon Instruments | ||
Digital handheld optical meter | ThorLabs | PM100D | Parametered on 475 nm |
Double egde stainless steel razor blades | Electron Microscopy Sciences | 72000 | Use half of the blade in the slicer |
Dual Fluorescent Protein Flashlight | Nightsea | DFP-1 | excitation, 440-460 nm; emission filter on glasses, 500 nm longpass. |
EGTA | Sigma | E4368 | final 0,2 mM |
Epifluorescence Microscope | Nikon | Eclipse TE-2000E | 10 or 20X |
Filter paper | Whatman | ||
Fluoro-Ruby 10% | Millipore | AG335 | disolve 10 mg in 100 µl of distilled water ; inject 150 to 300 nl |
GFP configuration (epifluo) | Nikon/Chroma | Fluorescent light (Intensilight); Cube: Filter Set Nikon B-2E/C FITC (Excitation: BP 465-495; Mirror: BS 505; Emission: BP 515-555) | |
Heatingplate | Physitemp | HP4M | |
Heparin choay 5000 U.I./ml | Sanofi | 5 ml vial | |
HEPES | Sigma | H3375 | final 10 mM |
High speed rotary micromotor kit | Foredom | K.1070 | maximum drill speed 38,000 rpm |
Internal solution compounds : | |||
Isolated Pulse Stimulator | A-M Systems | 2100 | |
KCl | Sigma | P4504 | final 1,2 mM |
Ketamine 1000 | Virbac | ||
Ketofen 10% | Merial | 100 mg/ml : dilute 1 µl in 1ml total (0,1%) | |
Laocaine (lidocaine) | MSD | 16,22 mg/ml : dilute 1 ml in 4 ml total (around 4%) | |
LED hi power spot for surgery | Photonic (via Phymep) | 10044 | |
LED Power Supply | Cairn Research | OptoLED Light Source | |
Manipulators | Luigs & Neumann | SM-7 | |
Mg-ATP 2H20 | Sigma | A9187 | final 4 mM |
MgCl2 | Sigma | 63069 | final 2 mM |
Micro temperature controler | Physitemp | MTC-1 | |
Milk powder | Carnation | ||
MultiClamp 700B | Axon Instruments | ||
Na Phosphocreatine | Sigma | P7936 | final 10 mM |
Na3-GTP 2H20 | Sigma | G9002 | final 0.4 mM |
needle holder/hemostat | FST | 13005-14 | |
pClamp acquisition software | Axon Instruments | ||
Peristaltic pump | Gilson | Minipuls 3 | 14-16 on the display for 2-3 ml/min |
Potassium gluconate (K-gluconate) | Sigma | G4500 | Final 135 mM |
ProLong Gold antifade mounting medium | Thermofisher Scientific | P36390 | |
Rompun 2% (xylazine) | Bayer | ||
small scissors | FST | 14060-09 | |
Sodium chloride 0.9% | Virbac | dilute 8.5 mL in 10 ml total | |
Stereomicroscope VISISCOPE SZT | VWR | 630-1584 | |
Stereotaxic frame with digital display | Kopf | Model 940 | Small animal stereotaxic instrument |
Streptavidin-Cy3 conjugate | Life technologies | 434315 | |
Streptavidin-Cy5 conjugate | Thermofisher Scientific | S32357 | |
Superglue3 Loctite | Dutscher | 999227 | 1g tube |
Suture filament Ethilon II 4-0 polyamid | Ethicon | F3210 | |
Syringe pump | kdScientific | Legato 130 – 788130 | Use Infuse and Withdraw modes |
Tissue slicer | Leica | VT1200S | speed 0.07, amplitude 1. |
tubing | Gilson | F117942, F117946 | Yellow/Black, Purple/Black |
upright microscope | Olympus | BX51W1 | |
Versi-dry bench absorbant paper | Nalgene |