Interações da proteína-proteína são essenciais para sistemas biológicos, e estudos sobre a cinética de ligação fornecem insights sobre a dinâmica e a função dos complexos da proteína. Nós descrevemos um método que quantifica os parâmetros cinéticos de uma proteína complexa usando transferência de energia de ressonância de fluorescência e a técnica de fluxo parou.
As proteínas são os operadores primários de sistemas biológicos, e geralmente interagem com outro macro – ou pequenas moléculas para realizar suas funções biológicas. Tais interações podem ser altamente dinâmicas, significando as subunidades interagindo constantemente são associadas e dissociadas a determinadas taxas. Enquanto a afinidade de ligação usando técnicas tais como suspenso quantitativo revela a força da interação, estudando a cinética de ligação de medição fornece insights sobre como rápido a interação ocorre e quanto tempo cada complexo pode existir. Além disso, medir a cinética da interação na presença de um fator adicional, como um fator de troca de proteína ou uma droga, ajuda a revelar o mecanismo pelo qual a interação é regulada por outro fator, fornecendo conhecimentos importantes para o avanço de pesquisas biológicas e médicas. Aqui, descrevemos um protocolo para avaliar a cinética de ligação de um complexo de proteínas que tem uma taxa de associação intrínseca elevada e pode ser rapidamente dissociado por outra proteína. O método utiliza a transferência de energia de ressonância de fluorescência para relatar a formação do complexo proteína in vitro, e permite monitorar a rápida associação e dissociação do complexo em tempo real em um fluorímetro de fluxo parou. Usando este ensaio, as constantes de taxa de associação e dissociação da proteína complexa são quantificadas.
Atividades biológicas em última análise, são realizadas por proteínas, mais do que interagir com outras pessoas para funções biológicas. Usando uma abordagem computacional, a quantidade total de interações da proteína-proteína em humanos é estimada em 650.000 ~1, e interrupção dessas interações muitas vezes leva a doenças2. Devido a seus papéis essenciais no controle de processos celulares e organismos, inúmeros métodos foram desenvolvidos para estudar interações da proteína-proteína, tais como levedura-dois-híbrido, complementação de fluorescência bimolecular, split-luciferase complementação e co-imunoprecipitação ensaio3. Enquanto esses métodos são bons em descobrir e confirmando as interações da proteína-proteína, eles são geralmente não-quantitativos e, portanto, fornecem informações limitadas sobre a afinidade entre os parceiros de proteína interagindo. Pull-downs quantitativas podem ser usados para medir a afinidade de ligação (por exemplo, a constante de dissociação Kd), mas ele não mede a cinética da ligação, nem pode ser aplicada quando o Kd é muito baixa devido a uma insuficiente relação sinal-ruído4. Espectroscopia de ressonância (SPR) de plasmon de superfície quantifica a cinética de ligação, mas requer uma superfície específica e a imobilização de um reagente na superfície, o que potencialmente pode alterar a propriedade de ligação do reagente5. Além disso, é difícil para SPR medir Associação rápida e taxas de dissociação5, e não é apropriado usar SPR para caracterizar o evento de troca de subunidades de proteínas em um complexo proteico. Aqui, descrevemos um método que permite medir taxas de proteína complexa montagem e desmontagem em uma escala de tempo em milissegundos. Este método foi essencial para determinar a função de Cullin –umssociated –Nedd8 –dissociated proteína 1 (Cand1) como o F-caixa proteína troca fator6,7.
Cand1 regula a dinâmica da E3 ligases do proteína (SCF) Skp1•Cul1•F-caixa, que pertencem à grande família de ligases do ubiquitin Cullin-anel. SCFs consistem no neddylation Cul1, que se liga a proteína de domínio de anel Rbx1, e uma proteína F-caixa intercambiável, o que recruta substratos e liga Cul1 através da proteína do adaptador Skp18. Como um ligase E3, SCF catalisa a conjugação da ubiquitina de seu substrato, e é ativado quando o substrato é recrutado pela proteína F-box, e quando Cul1 é modificado pela proteína ubiquitina-como Nedd89. Cand1 liga Cul1 sem modificações, e após a ligação, ele perturba tanto a associação de proteína Skp1•F-caixa com Cul1 e a conjugação de Nedd8 de Cul110,11,12,13. Como resultado, Cand1 parecia ser um inibidor da atividade do SCF in vitro, mas Cand1 deficiência em organismos causou defeitos que sugere um papel positivo de Cand1 na regulação de atividades SCF em vivo14,15,16 , 17. este paradoxo foi finalmente explicado por um estudo quantitativo que revelou as interações dinâmicas entre Cul1, Cand1 e Skp1•F-caixa de proteína. Utilizando ensaios de transferência (FRET) de energia ressonância fluorescência que detectam a formação dos complexos SCF e Cul1•Cand1, a associação e dissociação taxa constantes (k,na e kfora, respectivamente) foram medido individualmente. As medições revelaram que tanto Cand1 e Skp1•F-caixa de forma extremamente apertado complexo proteico com Cul1, mas o kfora do SCF é dramaticamente aumentado pela Cand1 e o kfora de Cul1•Cand1 é dramaticamente aumentada por Skp1•F-caixa proteína6,7. Estes resultados fornecem o apoio inicial e crítico para definir o papel de Cand1 como um fator de troca de proteína, que catalisa a formação de novos complexos SCF através da reciclagem de Cul1 desde os antigos complexos SCF.
Aqui, apresentamos o processo de desenvolvimento e usando o ensaio FRET para estudar a dinâmica do complexo Cul1•Cand17, e o mesmo princípio pode ser aplicado para estudar a dinâmica de várias biomoléculas. TRASTE ocorre quando um doador está animado com o comprimento de onda adequado, e um aceitador com espectro de excitação sobrepondo o espectro de emissão do doador está presente dentro de uma distância de 10 a 100 Å. O estado excitado é transferido para o aceitador, desse modo diminuindo a intensidade do doador e aumentando a intensidade de aceitador18. A eficiência do traste (E) depende do raio de Förster (R0) e a distância entre o doador e aceptor fluorophores (r) e é definida por: E = R06/ (R0 6 + r6). O raio de Förster (R0) depende de alguns fatores, incluindo a orientação angular de dipolo, a sobreposição espectral do par doador-aceitador e a solução usada19. Para aplicar o traste do ensaio em um fluorímetro de fluxo parou, que monitora a mudança das emissões doador em tempo real e permite medições de rápido k,na e kfora, é necessário estabelecer FRET eficiente que resulta em uma redução significativa das emissões de doador. Portanto, projetar FRET eficiente, escolhendo o par apropriado de corantes fluorescentes e sites sobre as proteínas alvo para anexar as tinturas é importante e será discutido neste protocolo.
TRASTE é um fenômeno físico que é de grande interesse para o estudo e compreensão de sistemas biológicos19. Aqui, apresentamos um protocolo para teste e usando o FRET para estudar a cinética de ligação de duas proteínas de interação. Ao projetar o traste, consideramos três fatores principais: a sobreposição espectral entre o doador de emissão e aceitador da excitação, a distância entre os dois fluorophores e a orientação do dipolo do fluorophores28. Par…
The authors have nothing to disclose.
Agradecemos perspicaz discussão sobre o desenvolvimento do ensaio FRET-Shu-UO Shan (California Institute of Technology). M.G., Y.Z. e X.L. foram financiados por fundos de inicialização da Universidade de Purdue para Y.Z. e X.L.This trabalho foi financiado em parte por uma concessão de semente da Purdue University Center para a biologia da planta.
Anion exchange chromatography column | GE Healthcare | 17505301 | HiTrap Q FF anion exchange chromatography column |
Benchtop refrigerated centrifuge | Eppendorf | 2231000511 | |
BL21 (DE3) Competent Cells | ThermoFisher Scientific | C600003 | |
Calcium Chloride | Fisher Scientific | C78-500 | |
Cation exchange chromatography column | GE Healthcare | 17505401 | HiTrap SP Sepharose FF |
Desalting Column | GE Healthcare | 17085101 | |
Floor model centrifuge (high speed) | Beckman Coulter | J2-MC | |
Floor model centrifuge (low speed) | Beckman Coulter | J6-MI | |
Fluorescence SpectraViewer | ThermoFisher Scientific | https://www.thermofisher.com/us/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html | |
FluoroMax fluorimeter | HORIBA | FluoroMax-3 | |
FPLC | GE Healthcare | 29018224 | |
GGGGAMC peptide | New England Peptide | custom synthesis | |
Glutathione beads | GE Healthcare | 17075605 | |
Glycerol | Fisher Scientific | G33-500 | |
HEPES | Fisher Scientific | BP310-100 | |
Isopropyl-β-D-thiogalactoside (IPTG) | Fisher Scientific | 15-529-019 | |
LB Broth | Fisher Scientific | BP1426-500 | |
Ni-NTA agarose | Qiagen | 30210 | |
Ovalbumin | MilliporeSigma | A2512 | |
pGEX-4T-2 vector | GE Healthcare | 28954550 | |
Protease inhibitor cocktail | MilliporeSigma | 4693132001 | |
Reduced glutathione | Fisher Scientific | BP25211 | |
Refrigerated shaker | Eppendorf | M1282-0004 | |
Rosetta Competent Cells | MilliporeSigma | 70953-3 | |
Size exclusion chromatography column | GE Healthcare | 28990944 | Superdex 200 10/300 GL column |
Sodium Chloride (NaCl) | Fisher Scientific | S271-500 | |
Stopped-flow fluorimeter | Hi-Tech Scientific | SF-61 DX2 | |
TCEP·HCl | Fisher Scientific | PI20490 | |
Thrombin | MilliporeSigma | T4648 | |
Tris Base | Fisher Scientific | BP152-500 | |
Ultrafiltration membrane | MilliporeSigma | UFC903008 | Amicon Ultra-15 Centrifugal Filter Units, Ultra-15, 30,000 NMWL |