Summary

Navegado de evaluación bilateral de las vías corticoespinales de los músculos del tobillo mediante estimulación magnética transcraneal

Published: February 19, 2019
doi:

Summary

El presente Protocolo describe la evaluación simultánea, bilateral de la respuesta corticomotor del sóleo y tibial anterior durante la activación voluntaria resto y tónico usando la estimulación magnética transcraneal solo pulso y neuronavegación sistema.

Abstract

Músculos de la pierna distal reciben entrada neural de áreas corticales del motor vía el tracto corticoespinal, que es uno de la vía descendente motor principal en los seres humanos y pueden evaluarse utilizando la estimulación magnética transcraneal (TMS). Dado el papel de los músculos distales de la pierna en vertical tareas posturales y dinámicas, como caminar, ha surgido un creciente interés en la investigación en la evaluación y modulación de los tractos corticoespinales en relación con la función de estos músculos en la última década. Sin embargo, parámetros metodológicos utilizados en trabajos previos han variado a través de estudios que la interpretación de los resultados de estudios transversales y longitudinales menos robusto. Por lo tanto, uso de un protocolo estandarizado de memorias de traducción específico para la evaluación de la respuesta de los músculos de la pierna corticomotor (CMR) permite la comparación directa de resultados a través de estudios y cohortes. El objetivo de este trabajo es presentar un protocolo que proporciona la flexibilidad para evaluar simultáneamente la CMR bilateral de dos músculos antagonistas principales del tobillo, el tibial anterior y el sóleo, usando solo pulso TMS con un sistema de Neuronavegación. El presente Protocolo es aplicable mientras que el músculo examinado completamente relajado o contraído isométrica en un porcentaje definido de máxima contracción voluntaria isométrica. Usando MRI estructural de cada sujeto con el sistema de Neuronavegación asegura la exacta y precisa colocación de la bobina sobre las representaciones corticales de pierna durante la evaluación. Dada la inconsistencia en CMR derivada medidas, este protocolo también describe un cálculo estandarizado de esas medidas mediante algoritmos automatizados. Aunque este Protocolo no se lleva a cabo durante las tareas posturales o dinámicas vertical, puede utilizarse para evaluar bilateralmente cualquier par de músculos de las piernas, antagónicos o sinérgicos, en sujetos neurológicamente intactos y deterioradas.

Introduction

Tibial anterior (TA) y soleus (SOL) son los músculos antagónicos tobillo situados en el compartimiento anterior y posterior de la pierna, respectivamente. Ambos músculos son uniarticular, mientras que la principal función de TA y SOL es dorsiflexión y plantarflex la articulación tibiotarsiana, respectivamente1. Por otra parte, TA es más funcional para las excursiones de mucho músculo y menos importante para la producción de fuerza, mientras que SOL es un músculo antigravedad diseñado para generar alta fuerza con pequeña excursión del músculo2. Ambos músculos son especialmente importantes durante las tareas postural y dinámica vertical (por ejemplo, caminar)3,4. Control neural, las piscinas del motorneuron de ambos músculos reciben unidad neural del cerebro vía el motor descendente vías5,6, además de diversos grados de unidad sensorial.

El motor principal descendente camino es el tracto corticoespinal, que origina de las áreas de motor primarias, premotora y suplementarias y termina en el espinal motorneuron piscinas7,8. En los seres humanos, el estado funcional de este tracto (corticomotor respuesta – CMR) puede ser factible evaluado usando la estimulación magnética transcraneal (TMS), una estimulación cerebral no invasiva herramienta9,10. Desde la introducción de la EMT y dada su significación funcional durante la tarea postural erguido y caminando, CMR de TA y SOL han sido evaluados en diferentes cohortes y tareas11,12,13,14 ,15,16,17,18,19,20,21,22,23 ,24,25,26,27,28,29,30,31,32 .

En contraste con la evaluación de CMR en los músculos de la extremidad superior33, no se ha establecido ningún protocolo universal de TMS para la evaluación de CMR en los músculos de la extremidad inferior. Debido a la falta de un protocolo establecido y la gran variabilidad metodológica en los estudios anteriores (e.g., tipo de bobina, uso de Neuronavegación, nivel de activación tónica, prueba lateral y músculo, uso y cálculo de CMR mide, etcetera. ), la interpretación de los resultados a través de estudios y cohortes pueden ser engorroso, complicado e inexacto. Como las medidas son funcionalmente relevantes en diversas tareas de motor, permite a un protocolo establecido de memorias de traducción específico para bajar evaluación de CMR de extremidad motor neurólogos y científicos de rehabilitación evaluar sistemáticamente el CMR en estos músculos a través de sesiones y varias cohortes.

Por lo tanto, el objetivo de este protocolo es describir la evaluación bilateral de TA y SOL CMR solo pulso sistema TMS y Neuronavegación. En contraste con anteriores trabajos, este protocolo tiene como objetivo maximizar el rigor de los procedimientos experimentales, adquisición de datos y análisis de datos mediante el empleo de factores metodológicos que optimicen la validez y la duración del experimento y estandarizar el CMR evaluación de estos dos músculos de la extremidad inferiores. Dado que el CMR de un músculo depende de si el músculo está completamente relajado o es parcialmente activa, este protocolo describe cómo la TA y SOL CMR pueden evaluarse durante resto y tónico activación voluntaria (TVA). Las siguientes secciones describen completamente el presente Protocolo. Por último, datos representativos se presentan y discuten. El protocolo descrito aquí se deriva de Agudelo et al. 201832.

Protocol

Todos los procedimientos experimentales presentados en este protocolo han sido aprobados por la Junta de revisión institucional local y están de acuerdo con la declaración de Helsinki. 1. consentimiento de proceso y seguridad cuestionarios Antes de cualquier experimento, explicar cada tema del aim(s) del estudio, los principales procedimientos experimentales y cualquier posibles factores de riesgo asociados a participar en el estudio. Después de responder a cualquier pregunta o p…

Representative Results

Figuras 2-4 presentan los datos de un representante varón de 31 año de edad neurológicamente intacto con altura y un peso de 178 cm y 83 kg, respectivamente. Figura 2 presenta los focos bilaterales y RMT de cada músculo de tobillo. Utilizando el punto situado en el centro de la zona de la pierna en cada hemisferio (ver cuadros en la figura 1B), la intensidad del 45% MSO bilateral fue utilizado para la caza del punto caliente. La ubicación…

Discussion

Dado el interés emergente en cómo la corteza de motor contribuye al control motor de músculos de la pierna durante tareas dinámicas en diversas cohortes, se necesita un protocolo estandarizado de TMS que describe la evaluación completa de estos músculos. Por lo tanto, por primera vez, el presente Protocolo proporciona procedimientos metodológicos estandarizados en la evaluación bilateral de los dos músculos antagónicos de tobillo, SOL y TA, durante los dos Estados del músculo (resto y TVA) utilizando un solo p…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Los autores agradecen a Dr. Jesse C. Dean para ayudar con el desarrollo metodológico y proporcionando información sobre el proyecto del manuscrito. Este trabajo fue apoyado por una VA carrera desarrollo Premio 2 RR & D N0787-W (MGB), un premio de desarrollo institucional de la nacional Instituto de General ciencias médicas del NIH grant número P20-GM109040 (SAK) y P2CHD086844 (SAK). El contenido no representa las opiniones del Departamento de asuntos de veteranos o el gobierno de Estados Unidos.

Materials

2 Magstim stimulators (Bistim module) The Magstim Company Limited; Whitland, UK Used to elicit bilateral motor evoked potentials in tibialis anterior and soleus muscles.
Adaptive parameter estimation by sequential testing (PEST) for TMS http://www.clinicalresearcher.org/software.htm Used to determine motor thresholds.
Amplifier Motion Lab Systems; Baton Rouge, LN, USA MA-300 Used to amplify EMG data.
Data Aqcuisition Unit Motion Lab Systems; Baton Rouge, LN, USA Micro 1401 Used to aqcuire EMG data.
Double cone coil The Magstim Company Limited; Whitland, UK PN: 9902AP Used to elicit bilateral motor evoked potentials in tibialis anterior and soleus muscles.
Polaris Northen Digital Inc.; Waterloo, Ontario, Canada Used to track the reflectiive markers located on subject tracker and coil tracker.
Signal Cambridge Electronics Design Limited; Cambridge, UK version 6 Used to collect motor evoked potentials during rest and TVA.
Single double differential surface EMG electrodes Motion Lab Systems; Baton Rouge, LN, USA MA-411 Used to record EMG signals.
TMS Frameless Stereotaxy Neuronavigation Sytem Brainsight 3, Rouge Research,
Montreal, Canada
Used to navigate coil position during TMS assessment.
Walker boot Mountainside Medical Equipment, Marcy, NY Used to stabilize ankle joint.

Riferimenti

  1. Schünke, M., Schulte, E., Ross, L. M., Schumacher, U., Lamperti, E. D. . Thieme Atlas of Anatomy: General Anatomy and Musculoskeletal System. , (2006).
  2. Lieber, R. L., Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 23 (11), 1647-1666 (2000).
  3. Winter, D. A. . The biomechanics and motor control of human gait: Normal, Elderly and Pathological. , (1991).
  4. Winter, D. A. . A.B.C. (anatomy, Biomechanics and Control) of Balance During Standing and Walking. , (1995).
  5. Nielsen, J. B. Motoneuronal drive during human walking. Brain Research Reviews. 40 (1-3), 192-201 (2002).
  6. Nielsen, J. B. How we walk: central control of muscle activity during human walking. Neuroscientist. 9 (3), 195-204 (2003).
  7. Davidoff, R. A. The pyramidal tract. Neurology. 40 (2), 332-339 (1990).
  8. Nathan, P. W., Smith, M. C., Deacon, P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 113 (Pt 2), 303-324 (1990).
  9. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature. 406 (6792), 147-150 (2000).
  10. Hallett, M. Transcranial magnetic stimulation: a primer. Neuron. 55 (2), 187-199 (2007).
  11. Brouwer, B., Ashby, P., Midroni, G. Excitability of corticospinal neurons during tonic muscle contractions in man. Experimental Brain Research. 74 (3), 649-652 (1989).
  12. Advani, A., Ashby, P. Corticospinal control of soleus motoneurons in man. Canadian Journal Physiology and Pharmacology. 68 (9), 1231-1235 (1990).
  13. Holmgren, H., Larsson, L. E., Pedersen, S. Late muscular responses to transcranial cortical stimulation in man. Electroencephalography and Clinical Neurophysiology. 75 (3), 161-172 (1990).
  14. Ackermann, H., Scholz, E., Koehler, W., Dichgans, J. Influence of posture and voluntary background contraction upon compound muscle action potentials from anterior tibial and soleus muscle following transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 81 (1), 71-80 (1991).
  15. Brouwer, B., Ashby, P. Corticospinal projections to lower limb motoneurons in man. Experimental Brain Research. 89 (3), 649-654 (1992).
  16. Priori, A., et al. Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 89 (2), 131-137 (1993).
  17. Valls-Sole, J., Alvarez, R., Tolosa, E. S. Responses of the soleus muscle to transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 93 (6), 421-427 (1994).
  18. Brouwer, B., Qiao, J. Characteristics and variability of lower limb motoneuron responses to transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 97 (1), 49-54 (1995).
  19. Devanne, H., Lavoie, B. A., Capaday, C. Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research. 114 (2), 329-338 (1997).
  20. Capaday, C., Lavoie, B. A., Barbeau, H., Schneider, C., Bonnard, M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. Journal of Neurophysiology. 81 (1), 129-139 (1999).
  21. Terao, Y., et al. Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation. Brain Research. 859 (1), 137-146 (2000).
  22. Christensen, L. O., Andersen, J. B., Sinkjaer, T., Nielsen, J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. Journal of Physiology. 531 (Pt 2), 545-557 (2001).
  23. Bawa, P., Chalmers, G. R., Stewart, H., Eisen, A. A. Responses of ankle extensor and flexor motoneurons to transcranial magnetic stimulation). Journal of Neurophysiology. 88 (1), 124-132 (2002).
  24. Soto, O., Valls-Sole, J., Shanahan, P., Rothwell, J. Reduction of intracortical inhibition in soleus muscle during postural activity. Journal of Neurophysiology. 96 (4), 1711-1717 (2006).
  25. Barthelemy, D., et al. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. Journal of Neurophysiology. 104 (2), 1167-1176 (2010).
  26. Barthelemy, D., et al. Functional implications of corticospinal tract impairment on gait after spinal cord injury. Spinal Cord. 51 (11), 852-856 (2013).
  27. Beaulieu, L. D., Masse-Alarie, H., Brouwer, B., Schneider, C. Brain control of volitional ankle tasks in people with chronic stroke and in healthy individuals. Journal of Neurological Science. 338 (1-2), 148-155 (2014).
  28. Palmer, J. A., Hsiao, H., Awad, L. N., Binder-Macleod, S. A. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clinical Neurophysiology. 127 (3), 1837-1844 (2016).
  29. Palmer, J. A., Needle, A. R., Pohlig, R. T., Binder-Macleod, S. A. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clinical Neurophysiology. 127 (1), 716-723 (2016).
  30. Palmer, J. A., Hsiao, H., Wright, T., Binder-Macleod, S. A. Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics. Physical Therapy. , (2017).
  31. Palmer, J. A., Zarzycki, R., Morton, S. M., Kesar, T. M., Binder-Macleod, S. A. Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation. Journal of Neurophysiology. 117 (4), 1615-1624 (2017).
  32. Charalambous, C. C., Dean, J. C., Adkins, D. L., Hanlon, C. A., Bowden, M. G. Characterizing the corticomotor connectivity of the bilateral ankle muscles during rest and isometric contraction in healthy adults. Journal of Electromyography and Kinesiology. 41, 9-18 (2018).
  33. Kleim, J. A., Kleim, E. D., Cramer, S. C. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nature Protocols. 2 (7), 1675-1684 (2007).
  34. Shellock, F. G., Spinazzi, A. MRI safety update 2008: part 2, screening patients for MRI. American Journal of Roentgenology. 191 (4), 1140-1149 (2008).
  35. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Screening questionnaire before TMS: an update. Clinical Neurophysiology. 122 (8), 1686 (2011).
  36. Conti, A., et al. Navigated transcranial magnetic stimulation for "somatotopic" tractography of the corticospinal tract. Neurosurgery. 10, 542-554 (2014).
  37. Comeau, R. . Transcranial Magnetic Stimulation. , 31-56 (2014).
  38. Cram, J. R., Criswell, E. . Cram’s Introduction to Surface Electromyography. , (2011).
  39. Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., Hagg, G. . European Recommendations for Surface ElectroMyoGraphy: Results of the Seniam Project (SENIAM). , (1999).
  40. Awiszus, F. TMS and threshold hunting. Supplements to Clinical Neurophysiology. 56, 13-23 (2003).
  41. Sinclair, C., Faulkner, D., Hammond, G. Flexible real-time control of MagStim 200(2) units for use in transcranial magnetic stimulation studies. Journal of Neuroscience Methods. 158 (2), 133-136 (2006).
  42. Alkadhi, H., et al. Reproducibility of primary motor cortex somatotopy under controlled conditions. American Journal of Neuroradiology. 23 (9), 1524-1532 (2002).
  43. Rossini, P. M., et al. Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology Supplement. 52, 171-185 (1999).
  44. Borckardt, J. J., Nahas, Z., Koola, J., George, M. S. Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods. Journak for ECT. 22 (3), 169-175 (2006).
  45. Livingston, S. C., Friedlander, D. L., Gibson, B. C., Melvin, J. R. Motor evoked potential response latencies demonstrate moderate correlations with height and limb length in healthy young adults. The Neurodiagnostic Journal. 53 (1), 63-78 (2013).
  46. Cacchio, A., et al. Reliability of TMS-related measures of tibialis anterior muscle in patients with chronic stroke and healthy subjects. Journal of Neurological Science. 303 (1-2), 90-94 (2011).
  47. Saisanen, L., et al. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction. Journal of Neuroscience Methods. 169 (1), 231-238 (2008).
  48. Ertekin, C., et al. A stable late soleus EMG response elicited by cortical stimulation during voluntary ankle dorsiflexion. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 97 (5), 275-283 (1995).
  49. Tarkka, I. M., McKay, W. B., Sherwood, A. M., Dimitrijevic, M. R. Early and late motor evoked potentials reflect preset agonist-antagonist organization in lower limb muscles. Muscle Nerve. 18 (3), 276-282 (1995).
  50. Ziemann, U., et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. Journal of Physiology. 518 (Pt 3), 895-906 (1999).
  51. McCambridge, A. B., Stinear, J. W., Byblow, W. D. Are ipsilateral motor evoked potentials subject to intracortical inhibition?. Journal of Neurophysiology. 115 (3), 1735-1739 (2016).
  52. Tazoe, T., Perez, M. A. Selective activation of ipsilateral motor pathways in intact humans. Journal of Neuroscience. 34 (42), 13924-13934 (2014).
  53. Chen, R., Yung, D., Li, J. Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. Journal of Neurophysiology. 89 (3), 1256-1264 (2003).
  54. Wassermann, E. M., Pascual-Leone, A., Hallett, M. Cortical motor representation of the ipsilateral hand and arm. Experimental Brain Research. 100 (1), 121-132 (1994).
  55. Kesar, T. M., Stinear, J. W., Wolf, S. L. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: Challenges and opportunities. Restorative Neurology and Neuroscience. 36 (3), 333-348 (2018).
  56. Lefaucheur, J. P. Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation. Neurophysiologie Clinique/Clinical Neurophysiology. 40 (1), 1-5 (2010).
  57. Sparing, R., Hesse, M. D., Fink, G. R. Neuronavigation for transcranial magnetic stimulation (TMS): where we are and where we are going. Cortex. 46 (1), 118-120 (2010).
  58. Sparing, R., Buelte, D., Meister, I. G., Pauš, T., Fink, G. R. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Human Brain Mapping. 29 (1), 82-96 (2008).
  59. Gugino, L. D., et al. Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clinical Neurophysiology. 112 (10), 1781-1792 (2001).
  60. Jung, N. H., et al. Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials. Brain Stimulation. 3 (2), 87-94 (2010).
  61. Terao, Y., Ugawa, Y. Basic mechanisms of TMS. J Clin Neurophysiol. 19 (4), 322-343 (2002).
  62. Madhavan, S., Rogers, L. M., Stinear, J. W. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. European Journal of Neuroscience. 32 (6), 1032-1039 (2010).
  63. Kujirai, T., et al. Corticocortical inhibition in human motor cortex. Journal of Physiology. 471, 501-519 (1993).
  64. Ziemann, U. Intracortical inhibition and facilitation in the conventional paired TMS paradigm. Electroencephalography and Clinical Neurophysiology Supplement. 51, 127-136 (1999).
  65. Cavaleri, R., Schabrun, S. M., Chipchase, L. S. The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis. Systematic Reviews. 6 (1), 48 (2017).
  66. Goldsworthy, M. R., Hordacre, B., Ridding, M. C. Minimum number of trials required for within- and between-session reliability of TMS measures of corticospinal excitability. Neuroscienze. 320, 205-209 (2016).
  67. Cavaleri, R., Schabrun, S. M., Chipchase, L. S. Determining the Optimal Number of Stimuli per Cranial Site during Transcranial Magnetic Stimulation Mapping. Neuroscience Journal. 2017, 6328569 (2017).
  68. Groppa, S., et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology. 123 (5), 858-882 (2012).
  69. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology. 91 (2), 79-92 (1994).
  70. Rothwell, J. C., et al. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology Supplement. 52, 97-103 (1999).
  71. Silbert, B. I., Patterson, H. I., Pevcic, D. D., Windnagel, K. A., Thickbroom, G. W. A comparison of relative-frequency and threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation. Clinical Neurophysiology. 124 (4), 708-712 (2013).
  72. Obata, H., Sekiguchi, H., Nakazawa, K., Ohtsuki, T. Enhanced excitability of the corticospinal pathway of the ankle extensor and flexor muscles during standing in humans. Experimental Brain Research. 197 (3), 207-213 (2009).
  73. Tokuno, C. D., Taube, W., Cresswell, A. G. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiological (Oxf). 195 (3), 385-395 (2009).
  74. Obata, H., Sekiguchi, H., Ohtsuki, T., Nakazawa, K. Posture-related modulation of cortical excitability in the tibialis anterior muscle in humans. Brain Research. 1577, 29-35 (2014).
  75. Remaud, A., Bilodeau, M., Tremblay, F. Age and Muscle-Dependent Variations in Corticospinal Excitability during Standing Tasks. PLoS ONE. 9 (10), e110004 (2014).
  76. Baudry, S., Collignon, S., Duchateau, J. Influence of age and posture on spinal and corticospinal excitability. Experimental Gerontology. 69, 62-69 (2015).
  77. Petersen, N. T., et al. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. Journal of Physiology. 537 (Pt 2), 651-656 (2001).
  78. Schubert, M., Curt, A., Jensen, L., Dietz, V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Experimental Brain Research. 115 (2), 234-246 (1997).
  79. Schubert, M., Curt, A., Colombo, G., Berger, W., Dietz, V. Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Experimental Brain Research. 126 (4), 583-588 (1999).
  80. Ngomo, S., Leonard, G., Moffet, H., Mercier, C. Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. Journal of Neuroscience Methods. 205 (1), 65-71 (2012).
  81. Niskanen, E., et al. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study. Human Brain Mapping. 31 (8), 1272-1280 (2010).
  82. Thordstein, M., Saar, K., Pegenius, G., Elam, M. Individual effects of varying stimulation intensity and response criteria on area of activation for different muscles in humans. A study using navigated transcranial magnetic stimulation. Brain Stimulation. 6 (1), 49-53 (2013).
  83. Vaalto, S., et al. Long-term plasticity may be manifested as reduction or expansion of cortical representations of actively used muscles in motor skill specialists. Neuroreport. 24 (11), 596-600 (2013).
  84. Forster, M. T., Limbart, M., Seifert, V., Senft, C. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery. 10, 55-56 (2014).
  85. Saisanen, L., et al. Non-invasive preoperative localization of primary motor cortex in epilepsy surgery by navigated transcranial magnetic stimulation. Epilepsy Research. 92 (2-3), 134-144 (2010).

Play Video

Citazione di questo articolo
Charalambous, C. C., Liang, J. N., Kautz, S. A., George, M. S., Bowden, M. G. Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation. J. Vis. Exp. (144), e58944, doi:10.3791/58944 (2019).

View Video