Summary

経頭蓋磁気刺激の移動による足首の筋の皮質脊髄路の経路の二国間の評価

Published: February 19, 2019
doi:

Summary

存在のプロトコル記述する単発経頭蓋磁気刺激とニューロナビゲーションを使用して残りの部分と強壮剤の自主活性化中に前脛骨筋とヒラメ筋の皮質応答の同時、二国間の評価システム。

Abstract

下腿遠位部の筋肉は人間メイン モーターの下降経路の一つである皮質脊髄路を介して運動皮質からの神経入力を受け取るし、経頭蓋磁気刺激 (TMS) を使用して評価することができます。直立姿勢と動的タスク、ウォーキングなどで下腿遠位部の筋肉の役割を与えられた評価とこれらの筋肉の機能を基準にしての皮質脊髄路の変調の研究関心の高まりは、過去 10 年間で浮上しています。ただし、前の仕事で使用される方法論的パラメーターは、横断的・縦断的研究の結果の解釈をより堅牢にする研究に変化しています。したがって、脚の筋肉の皮質応答 (CMR) の評価に特定標準化された TMS プロトコルの使用結果の直接の比較研究とコホートで許可されます。本稿の目的は、単発 TMS を用いたニューロナビゲーション システムの 2 つ主要な足首拮抗筋、前脛骨筋とヒラメ、二国間 CMR を同時に評価するための柔軟性を提供するプロトコルを提示することです。この議定書は、検査された筋肉が完全にリラックスや尺最大等尺性随意収縮の定義の割合で契約が適用されます。ニューロナビゲーション システムと各教科の構造 MRI を用いた正確な正確な位置決めコイルの脚の皮質表現を評価中に保証します。派生 CMR 対策の矛盾を考えると、このプロトコルはまた自動化されたアルゴリズムを使用して、これらの対策の標準化された計算をについて説明します。このプロトコルは、直立姿勢または動的タスク中に実施しないものの、足の筋肉、敵対的または相乗的、神経学的そのままと障害の両方の科目での二国間のペアを評価するために使用できます。

Introduction

脛骨前方 (TA)、ヒラメ (SOL) 足首拮抗筋、下腿の前部と後部コンパートメントにそれぞれ位置します。両方の筋肉は、TA とソルの主な機能は、背理と plantarflex 腿関節それぞれ1uniarticular、です。さらに、TA は長い筋肉のエクスカーションより機能的で力の生産のより少なく重要が、ソルは、抗重力筋筋2の小遠足で高い力を生成するように設計。両方の筋肉は直立姿勢タスクと動的タスク (例えば、歩行)3,4の間に特に関連しています。ニューラル制御に関する両方の筋肉の motorneuron プールは、下降経路5,6感覚の度合いに加えてモーターを介して脳から神経ドライブを受けます。

経路を降順メイン モーターは、皮質脊髄路に由来するプライマリ、運動前野、補足運動野と脊髄の motorneuron プール7,8で終了です。ヒトでは、この管 (皮質応答 – CMR) の機能的状態動けなかった評価できます経頭蓋磁気刺激 (TMS)、非侵襲的脳刺激ツール9,10を使用します。直立姿勢タスクおよび歩行導入 TMS とその機能的意義を考える、以来 CMR の TA とソルが評価され様々 なコホートとタスク11,12,13,14 ,,1516,17,18,19,20,21,22,23 ,24,25,26,27,28,29,30,31,32.

上肢筋肉33CMR の評価とは対照的普遍的な TMS プロトコルが設定されていない下肢筋肉の CMR の評価のため。以前の研究で大きな方法論的変動と確立されたプロトコルの欠如 (コイルの種類などニューロナビゲーション、強壮剤活性化、テスト側と筋肉のレベルの使用を使用し、CMR の計算対策、など。) 間の結果の解釈を研究、コホートが面倒な複雑で、不正確にすることができます。メジャーは、さまざまな運動タスクに関連の機能、下肢 CMR 評価を下げる特定 TMS プロトコルが設定されてを使用モーター神経科学、リハビリテーション科学者間でこれらの筋肉の CMR を体系的に評価するにはセッションは、多様な集団。

したがって、このプロトコルの目的は、TA と単発 TMS ・ ニューロナビゲーション システムを用いたゾル CMR の二国間の評価を記述するためです。前の仕事と対照をなしてこのプロトコルは妥当性と実験の期間を最適化する方法論的要因を用いた実験手順、データ集録、データの解析の厳しさを最大化し、CMR を標準化を目指しています。これら 2 つ下肢筋の評価。筋肉の CMR は、筋肉が完全にリラックスしているか、部分的に活性化に依存することを考える、このプロトコルは TA とソル CMR を休息と強壮剤自主活性化 (TVA) の中に評価される方法について説明します。以下のセクションは徹底的に現在のプロトコルを説明します。最後に、代表的なデータを提示・説明されます。ここで説明されているプロトコルは、201832ことから派生しました。

Protocol

このプロトコルですべての実験プロシージャ ローカル制度検討委員会によって承認されているとヘルシンキ宣言に従ってです。 1. 同意プロセスと安全性アンケート どんな実験前に研究、主な実験手順、および研究に参加するのに関連付けられている任意の潜在的なリスク要因の各科目に説明します。質問や科目があります懸念に回答した後、サブジェクトに同?…

Representative Results

図 2-4データから現在代表的な神経学的にそのまま 31 歳男性身長・体重 178 cm ・ 83 kg よりそれぞれ。 図 2は、二国間のホット スポットと各足首の筋の RMT を示します。各半球の足領域の中央上にあるスポットを使用 (図 1 bの正方形を参照)、MSO がホット スポットの狩猟に使用された二国間 45% の強度。各筋肉のためのホット スポット?…

Discussion

様々 なコホートで動的タスク中に大脳皮質の運動野が脚の筋肉の運動の制御に貢献する方法で新たな関心を考えると、これらの筋肉の徹底的な評価を記述する標準化された TMS プロトコルが必要です。したがって、最初の時間の議定書は標準化された方法論的手順を提供します 2 つ足首拮抗筋、ソルと、TA の二国間の評価の 2 つの筋肉状態 (残り、TVA) 中にパルスを用いた単一 TMS ニューロナ?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

著者は、方法論の開発を手伝うことと原稿の草案に関するフィードバックの提供ありがとう博士ジェシー c. ディーン。この作品は、VA のキャリア開発賞 2 RR & D N0787 W (MGB) 制度開発賞から、一般的な医療技術研究所 NIH グラント番号 P20 GM109040 (SAK) の下の P2CHD086844 (SAK) によって支えられました。コンテンツには、退役軍人局やアメリカ合衆国政府の見解はありません。

Materials

2 Magstim stimulators (Bistim module) The Magstim Company Limited; Whitland, UK Used to elicit bilateral motor evoked potentials in tibialis anterior and soleus muscles.
Adaptive parameter estimation by sequential testing (PEST) for TMS http://www.clinicalresearcher.org/software.htm Used to determine motor thresholds.
Amplifier Motion Lab Systems; Baton Rouge, LN, USA MA-300 Used to amplify EMG data.
Data Aqcuisition Unit Motion Lab Systems; Baton Rouge, LN, USA Micro 1401 Used to aqcuire EMG data.
Double cone coil The Magstim Company Limited; Whitland, UK PN: 9902AP Used to elicit bilateral motor evoked potentials in tibialis anterior and soleus muscles.
Polaris Northen Digital Inc.; Waterloo, Ontario, Canada Used to track the reflectiive markers located on subject tracker and coil tracker.
Signal Cambridge Electronics Design Limited; Cambridge, UK version 6 Used to collect motor evoked potentials during rest and TVA.
Single double differential surface EMG electrodes Motion Lab Systems; Baton Rouge, LN, USA MA-411 Used to record EMG signals.
TMS Frameless Stereotaxy Neuronavigation Sytem Brainsight 3, Rouge Research,
Montreal, Canada
Used to navigate coil position during TMS assessment.
Walker boot Mountainside Medical Equipment, Marcy, NY Used to stabilize ankle joint.

Riferimenti

  1. Schünke, M., Schulte, E., Ross, L. M., Schumacher, U., Lamperti, E. D. . Thieme Atlas of Anatomy: General Anatomy and Musculoskeletal System. , (2006).
  2. Lieber, R. L., Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 23 (11), 1647-1666 (2000).
  3. Winter, D. A. . The biomechanics and motor control of human gait: Normal, Elderly and Pathological. , (1991).
  4. Winter, D. A. . A.B.C. (anatomy, Biomechanics and Control) of Balance During Standing and Walking. , (1995).
  5. Nielsen, J. B. Motoneuronal drive during human walking. Brain Research Reviews. 40 (1-3), 192-201 (2002).
  6. Nielsen, J. B. How we walk: central control of muscle activity during human walking. Neuroscientist. 9 (3), 195-204 (2003).
  7. Davidoff, R. A. The pyramidal tract. Neurology. 40 (2), 332-339 (1990).
  8. Nathan, P. W., Smith, M. C., Deacon, P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 113 (Pt 2), 303-324 (1990).
  9. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature. 406 (6792), 147-150 (2000).
  10. Hallett, M. Transcranial magnetic stimulation: a primer. Neuron. 55 (2), 187-199 (2007).
  11. Brouwer, B., Ashby, P., Midroni, G. Excitability of corticospinal neurons during tonic muscle contractions in man. Experimental Brain Research. 74 (3), 649-652 (1989).
  12. Advani, A., Ashby, P. Corticospinal control of soleus motoneurons in man. Canadian Journal Physiology and Pharmacology. 68 (9), 1231-1235 (1990).
  13. Holmgren, H., Larsson, L. E., Pedersen, S. Late muscular responses to transcranial cortical stimulation in man. Electroencephalography and Clinical Neurophysiology. 75 (3), 161-172 (1990).
  14. Ackermann, H., Scholz, E., Koehler, W., Dichgans, J. Influence of posture and voluntary background contraction upon compound muscle action potentials from anterior tibial and soleus muscle following transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 81 (1), 71-80 (1991).
  15. Brouwer, B., Ashby, P. Corticospinal projections to lower limb motoneurons in man. Experimental Brain Research. 89 (3), 649-654 (1992).
  16. Priori, A., et al. Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 89 (2), 131-137 (1993).
  17. Valls-Sole, J., Alvarez, R., Tolosa, E. S. Responses of the soleus muscle to transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 93 (6), 421-427 (1994).
  18. Brouwer, B., Qiao, J. Characteristics and variability of lower limb motoneuron responses to transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 97 (1), 49-54 (1995).
  19. Devanne, H., Lavoie, B. A., Capaday, C. Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research. 114 (2), 329-338 (1997).
  20. Capaday, C., Lavoie, B. A., Barbeau, H., Schneider, C., Bonnard, M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. Journal of Neurophysiology. 81 (1), 129-139 (1999).
  21. Terao, Y., et al. Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation. Brain Research. 859 (1), 137-146 (2000).
  22. Christensen, L. O., Andersen, J. B., Sinkjaer, T., Nielsen, J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. Journal of Physiology. 531 (Pt 2), 545-557 (2001).
  23. Bawa, P., Chalmers, G. R., Stewart, H., Eisen, A. A. Responses of ankle extensor and flexor motoneurons to transcranial magnetic stimulation). Journal of Neurophysiology. 88 (1), 124-132 (2002).
  24. Soto, O., Valls-Sole, J., Shanahan, P., Rothwell, J. Reduction of intracortical inhibition in soleus muscle during postural activity. Journal of Neurophysiology. 96 (4), 1711-1717 (2006).
  25. Barthelemy, D., et al. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. Journal of Neurophysiology. 104 (2), 1167-1176 (2010).
  26. Barthelemy, D., et al. Functional implications of corticospinal tract impairment on gait after spinal cord injury. Spinal Cord. 51 (11), 852-856 (2013).
  27. Beaulieu, L. D., Masse-Alarie, H., Brouwer, B., Schneider, C. Brain control of volitional ankle tasks in people with chronic stroke and in healthy individuals. Journal of Neurological Science. 338 (1-2), 148-155 (2014).
  28. Palmer, J. A., Hsiao, H., Awad, L. N., Binder-Macleod, S. A. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clinical Neurophysiology. 127 (3), 1837-1844 (2016).
  29. Palmer, J. A., Needle, A. R., Pohlig, R. T., Binder-Macleod, S. A. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clinical Neurophysiology. 127 (1), 716-723 (2016).
  30. Palmer, J. A., Hsiao, H., Wright, T., Binder-Macleod, S. A. Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics. Physical Therapy. , (2017).
  31. Palmer, J. A., Zarzycki, R., Morton, S. M., Kesar, T. M., Binder-Macleod, S. A. Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation. Journal of Neurophysiology. 117 (4), 1615-1624 (2017).
  32. Charalambous, C. C., Dean, J. C., Adkins, D. L., Hanlon, C. A., Bowden, M. G. Characterizing the corticomotor connectivity of the bilateral ankle muscles during rest and isometric contraction in healthy adults. Journal of Electromyography and Kinesiology. 41, 9-18 (2018).
  33. Kleim, J. A., Kleim, E. D., Cramer, S. C. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nature Protocols. 2 (7), 1675-1684 (2007).
  34. Shellock, F. G., Spinazzi, A. MRI safety update 2008: part 2, screening patients for MRI. American Journal of Roentgenology. 191 (4), 1140-1149 (2008).
  35. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Screening questionnaire before TMS: an update. Clinical Neurophysiology. 122 (8), 1686 (2011).
  36. Conti, A., et al. Navigated transcranial magnetic stimulation for "somatotopic" tractography of the corticospinal tract. Neurosurgery. 10, 542-554 (2014).
  37. Comeau, R. . Transcranial Magnetic Stimulation. , 31-56 (2014).
  38. Cram, J. R., Criswell, E. . Cram’s Introduction to Surface Electromyography. , (2011).
  39. Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., Hagg, G. . European Recommendations for Surface ElectroMyoGraphy: Results of the Seniam Project (SENIAM). , (1999).
  40. Awiszus, F. TMS and threshold hunting. Supplements to Clinical Neurophysiology. 56, 13-23 (2003).
  41. Sinclair, C., Faulkner, D., Hammond, G. Flexible real-time control of MagStim 200(2) units for use in transcranial magnetic stimulation studies. Journal of Neuroscience Methods. 158 (2), 133-136 (2006).
  42. Alkadhi, H., et al. Reproducibility of primary motor cortex somatotopy under controlled conditions. American Journal of Neuroradiology. 23 (9), 1524-1532 (2002).
  43. Rossini, P. M., et al. Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology Supplement. 52, 171-185 (1999).
  44. Borckardt, J. J., Nahas, Z., Koola, J., George, M. S. Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods. Journak for ECT. 22 (3), 169-175 (2006).
  45. Livingston, S. C., Friedlander, D. L., Gibson, B. C., Melvin, J. R. Motor evoked potential response latencies demonstrate moderate correlations with height and limb length in healthy young adults. The Neurodiagnostic Journal. 53 (1), 63-78 (2013).
  46. Cacchio, A., et al. Reliability of TMS-related measures of tibialis anterior muscle in patients with chronic stroke and healthy subjects. Journal of Neurological Science. 303 (1-2), 90-94 (2011).
  47. Saisanen, L., et al. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction. Journal of Neuroscience Methods. 169 (1), 231-238 (2008).
  48. Ertekin, C., et al. A stable late soleus EMG response elicited by cortical stimulation during voluntary ankle dorsiflexion. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 97 (5), 275-283 (1995).
  49. Tarkka, I. M., McKay, W. B., Sherwood, A. M., Dimitrijevic, M. R. Early and late motor evoked potentials reflect preset agonist-antagonist organization in lower limb muscles. Muscle Nerve. 18 (3), 276-282 (1995).
  50. Ziemann, U., et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. Journal of Physiology. 518 (Pt 3), 895-906 (1999).
  51. McCambridge, A. B., Stinear, J. W., Byblow, W. D. Are ipsilateral motor evoked potentials subject to intracortical inhibition?. Journal of Neurophysiology. 115 (3), 1735-1739 (2016).
  52. Tazoe, T., Perez, M. A. Selective activation of ipsilateral motor pathways in intact humans. Journal of Neuroscience. 34 (42), 13924-13934 (2014).
  53. Chen, R., Yung, D., Li, J. Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. Journal of Neurophysiology. 89 (3), 1256-1264 (2003).
  54. Wassermann, E. M., Pascual-Leone, A., Hallett, M. Cortical motor representation of the ipsilateral hand and arm. Experimental Brain Research. 100 (1), 121-132 (1994).
  55. Kesar, T. M., Stinear, J. W., Wolf, S. L. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: Challenges and opportunities. Restorative Neurology and Neuroscience. 36 (3), 333-348 (2018).
  56. Lefaucheur, J. P. Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation. Neurophysiologie Clinique/Clinical Neurophysiology. 40 (1), 1-5 (2010).
  57. Sparing, R., Hesse, M. D., Fink, G. R. Neuronavigation for transcranial magnetic stimulation (TMS): where we are and where we are going. Cortex. 46 (1), 118-120 (2010).
  58. Sparing, R., Buelte, D., Meister, I. G., Pauš, T., Fink, G. R. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Human Brain Mapping. 29 (1), 82-96 (2008).
  59. Gugino, L. D., et al. Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clinical Neurophysiology. 112 (10), 1781-1792 (2001).
  60. Jung, N. H., et al. Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials. Brain Stimulation. 3 (2), 87-94 (2010).
  61. Terao, Y., Ugawa, Y. Basic mechanisms of TMS. J Clin Neurophysiol. 19 (4), 322-343 (2002).
  62. Madhavan, S., Rogers, L. M., Stinear, J. W. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. European Journal of Neuroscience. 32 (6), 1032-1039 (2010).
  63. Kujirai, T., et al. Corticocortical inhibition in human motor cortex. Journal of Physiology. 471, 501-519 (1993).
  64. Ziemann, U. Intracortical inhibition and facilitation in the conventional paired TMS paradigm. Electroencephalography and Clinical Neurophysiology Supplement. 51, 127-136 (1999).
  65. Cavaleri, R., Schabrun, S. M., Chipchase, L. S. The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis. Systematic Reviews. 6 (1), 48 (2017).
  66. Goldsworthy, M. R., Hordacre, B., Ridding, M. C. Minimum number of trials required for within- and between-session reliability of TMS measures of corticospinal excitability. Neuroscienze. 320, 205-209 (2016).
  67. Cavaleri, R., Schabrun, S. M., Chipchase, L. S. Determining the Optimal Number of Stimuli per Cranial Site during Transcranial Magnetic Stimulation Mapping. Neuroscience Journal. 2017, 6328569 (2017).
  68. Groppa, S., et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology. 123 (5), 858-882 (2012).
  69. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology. 91 (2), 79-92 (1994).
  70. Rothwell, J. C., et al. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology Supplement. 52, 97-103 (1999).
  71. Silbert, B. I., Patterson, H. I., Pevcic, D. D., Windnagel, K. A., Thickbroom, G. W. A comparison of relative-frequency and threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation. Clinical Neurophysiology. 124 (4), 708-712 (2013).
  72. Obata, H., Sekiguchi, H., Nakazawa, K., Ohtsuki, T. Enhanced excitability of the corticospinal pathway of the ankle extensor and flexor muscles during standing in humans. Experimental Brain Research. 197 (3), 207-213 (2009).
  73. Tokuno, C. D., Taube, W., Cresswell, A. G. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiological (Oxf). 195 (3), 385-395 (2009).
  74. Obata, H., Sekiguchi, H., Ohtsuki, T., Nakazawa, K. Posture-related modulation of cortical excitability in the tibialis anterior muscle in humans. Brain Research. 1577, 29-35 (2014).
  75. Remaud, A., Bilodeau, M., Tremblay, F. Age and Muscle-Dependent Variations in Corticospinal Excitability during Standing Tasks. PLoS ONE. 9 (10), e110004 (2014).
  76. Baudry, S., Collignon, S., Duchateau, J. Influence of age and posture on spinal and corticospinal excitability. Experimental Gerontology. 69, 62-69 (2015).
  77. Petersen, N. T., et al. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. Journal of Physiology. 537 (Pt 2), 651-656 (2001).
  78. Schubert, M., Curt, A., Jensen, L., Dietz, V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Experimental Brain Research. 115 (2), 234-246 (1997).
  79. Schubert, M., Curt, A., Colombo, G., Berger, W., Dietz, V. Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Experimental Brain Research. 126 (4), 583-588 (1999).
  80. Ngomo, S., Leonard, G., Moffet, H., Mercier, C. Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. Journal of Neuroscience Methods. 205 (1), 65-71 (2012).
  81. Niskanen, E., et al. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study. Human Brain Mapping. 31 (8), 1272-1280 (2010).
  82. Thordstein, M., Saar, K., Pegenius, G., Elam, M. Individual effects of varying stimulation intensity and response criteria on area of activation for different muscles in humans. A study using navigated transcranial magnetic stimulation. Brain Stimulation. 6 (1), 49-53 (2013).
  83. Vaalto, S., et al. Long-term plasticity may be manifested as reduction or expansion of cortical representations of actively used muscles in motor skill specialists. Neuroreport. 24 (11), 596-600 (2013).
  84. Forster, M. T., Limbart, M., Seifert, V., Senft, C. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery. 10, 55-56 (2014).
  85. Saisanen, L., et al. Non-invasive preoperative localization of primary motor cortex in epilepsy surgery by navigated transcranial magnetic stimulation. Epilepsy Research. 92 (2-3), 134-144 (2010).

Play Video

Citazione di questo articolo
Charalambous, C. C., Liang, J. N., Kautz, S. A., George, M. S., Bowden, M. G. Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation. J. Vis. Exp. (144), e58944, doi:10.3791/58944 (2019).

View Video