Here we present an elegant protocol for in vivo evaluation of vaccine effectiveness and host immune responses. This protocol can be adapted for vaccine models that study viral, bacterial, or parasitic pathogens.
Vaccines are a 20th century medical marvel. They have dramatically reduced the morbidity and mortality caused by infectious diseases and contributed to a striking increase in life expectancy around the globe. Nonetheless, determining vaccine efficacy remains a challenge. Emerging evidence suggests that the current acellular vaccine (aPV) for Bordetella pertussis (B. pertussis) induces suboptimal immunity. Therefore, a major challenge is designing a next-generation vaccine that induces protective immunity without the adverse side effects of a whole-cell vaccine (wPV). Here we describe a protocol that we used to test the efficacy of a promising, novel adjuvant that skews immune responses to a protective Th1/Th17 phenotype and promotes a better clearance of a B. pertussis challenge from the murine respiratory tract. This article describes the protocol for mouse immunization, bacterial inoculation, tissue harvesting, and analysis of immune responses. Using this method, within our model, we have successfully elucidated crucial mechanisms elicited by a promising, next-generation acellular pertussis vaccine. This method can be applied to any infectious disease model in order to determine vaccine efficacy.
Vaccines represent one of the greatest public health achievements of the 20th century, yet we still do not fully understand the mechanisms by which successful vaccines stimulate protective immunity. The identification of molecular signatures (e.g., cell activation markers, expansion of cellular subtypes, and patterns of gene expression) induced after vaccination provides a plethora of information for predicting and generating an efficacious immune response. The complexity of host-pathogen responses cannot be adequately replicated using in vitro cell culture systems1. In vivo vaccine models are designed to concomitantly evaluate multiple immune cell types within the host. This provides an advantage when characterizing vaccine antigen processing and presentation, differential cytokine secretion, and expansion of immune cells. The protocol described here provides a detailed method to determine vaccine efficacy through evaluation of the systemic and local immune responses and quantification of pathogen burden in tissues of interest. The example provided here tests the efficacy of an experimental vaccine for the pathogen Bordetella pertussis (B. pertussis).
B. pertussis is a gram-negative bacterium that is the etiological agent of the respiratory disease whooping cough (pertussis)2,3. Close contact with infected individuals (symptomatic or asymptomatic) leads to transmission, colonization, and disease. Despite significant global vaccine coverage4, pertussis is considered a resurging disease in many nations around the world and is a major cause of preventable childhood deaths5,6,7,8. In 2015, B. pertussis and pertussis were included in the National Institute of Allergy and infectious Diseases (NIAID) emerging infectious pathogen/disease list, emphasizing the need for development of a better vaccine that confers long-lived protective immunity.
Currently, an active area of investigation to control pertussis resurgence is development of a next-generation acellular pertussis vaccine (aPV) with an optimal combination of novel adjuvants and antigens to mimic the immune response elicited by the whole-cell pertussis vaccine (wPV)9. Using the protocol described, we recently reported that the modification of a current FDA-approved aPV by the addition of a novel adjuvant, Bordetella colonization factor A (BcfA), resulted in more efficient reduction of B. pertussis bacterial load from mouse lungs10,11. This increased protection was accompanied by the skewing of an alum-induced Th1/Th2 immune response to the more protective Th1/Th17 immune profile10. This protocol is detailed and comprehensive, enabling the investigator to obtain maximal information through concurrent evaluation of host and immune responses to a variety of pathogens.
The protocol described here follows the representative vaccine schedule, shown in Figure 1, to ensure optimal host immune responses.
All experiments with live animals were conducted following a protocol approved by The Ohio State University IACUC in accordance with IACUC guidelines. C57BL/6 mice were used in all immunizations and infections. Both male and female mice are used in each group as per NIH guidelines. The number of animals per group was determined by power calculations based on the predicted differences in outcome among experimental groups. For example, 8 mice per group will yield 80% power at α = 0.05 (2-sided) for a 2-sample t-test to detect differences in the outcome of interest of 1.33 standard deviations (SDs).
1. Immunization of Mice
2. Growth of B. pertussis Strains and Preparation of Infection Inoculum
3. Murine Intranasal Infection Model
4. Harvesting of Animal Tissue after Infection
5. Processing of Spleen
6. Processing of Lungs
7. Processing of Nasal Septum and Trachea
8. Processing of Blood
The model described shows a method to evaluate vaccine efficiency and immune responses during host-pathogen interactions. Figure 1 depicts the representative vaccine schedule used to immunize and infect mice and harvest tissues for analysis. Figure 2 demonstrates the setup of the anesthesia system employed to induce mice, enabling investigators to deliver immunizations and bacterial inoculums. Figure 3 shows example OD600 measurements and calculations to achieve a 1 OD bacterial suspension to prepare 100-fold diluted bacterial inoculum to be delivered to mice. Figure 4 depicts the inoculum preparation used for the infection, the plating scheme of the serial dilutions, and the example calculations used to enumerate CFUs delivered to mice based upon plating serial dilutions. Figure 5 shows antigen-specific recall responses elicited after seven days of stimulation with the vaccine antigen FHA. Immunize spleen cells from the combination vaccine group, Alum/FHA/BcfA, produced IFNγ and IL-17, while significantly downregulating IL-5. This effect promotes a Th1/Th17 polarization of the immune response during B. pertussis infection. Background levels of cytokines were produced by incubation of immunized spleen cells with media alone, indicating that the cytokines detected were recall responses to the immunization (data not shown). Figure 6 depicts an example CFU enumeration of bacteria recovered from respiratory tract tissues of an immunized mouse, using serial dilutions of B. pertussis tissue homogenates plated on 10% BG + Sm plates. Raw counts were multiplied by the dilution factor and total volume of the tissue lysate and the data were log transformed. CFUs from immunized animals are then compared to non-immunized (naïve) animals to determine the protective effect of the vaccine.
Figure 1: Representative vaccine schedule. Mice are immunized on day 0 and then boosted ~4 weeks later (d28) with the appropriate aPV. Infection of the mice with B. pertussis occurs ~2 weeks (d42) after boosting mice. After infection the animals are killed on various days (d43-56) post-inoculation. Tissue and blood is collected for downstream analysis (e.g., CFU enumeration, cytokine and antibody ELISAs). Please click here to view a larger version of this figure.
Figure 2: Anesthesia machine setup. Shown is an anesthetic vaporizer with attached induction chamber and scavenger system (inside biological safety cabinet). Please click here to view a larger version of this figure.
Figure 3: Preparation of 1 OD600 bacterial suspension. OD600 values were obtained from diluted primary B. pertussis cultures. One culture in log phase was used to calculate volume needed to obtain a culture at 1 OD600 culture for infection. Briefly, an OD600 of 1 was divided by the calculated OD600 of the desired culture to obtain a volume equaling 1 OD to be used for infection. Briefly, an OD600 of 1 was divided by the calculated OD600 of the desired culture to obtain a volume equaling 1 OD to be used for infection. Please click here to view a larger version of this figure.
Figure 4: Calculation of delivered intranasal inoculum. (A) Schematic of serial dilution of infection inoculum that is diluted to 10-4, 10-5, and 10-6. These dilutions are plated on 10% BG + Sm, incubated for 4 days at 37 °C and then counted. (B) Counts from 10-4, 10-5, and 10-6 dilutions are then used to calculate intranasally delivered CFUs. Please click here to view a larger version of this figure.
Figure 5: Cytokine production by spleen cells immunized with FHA, Alum/FHA, BcfA/FHA, and Alum/BcfA/FHA. Dissociated cells were cultured with FHA for 7 days. Supernatants were tested by sandwich ELISA for (A) IFN-γ, (B) IL-17, and (C) IL-5. Errors bars are expressed as standard deviation of the mean of each group, n = 5 per group. ***p < 0.001. The figure is adapted from a previous publication10. Please click here to view a larger version of this figure.
Figure 6: B. pertussis CFUs and calculations from harvested tissue from mice. (A) B. pertussis CFUs from homogenized mouse tissue. 0.1 mL serial dilutions incubated at 37 °C for 4 days. (B) Calculations based upon CFUs obtained from homogenized trachea. CFUs were multiplied by the respective dilution and then multiplied by 10 to achieve CFUs per mL. In order to obtain CFU per organ, the CFUs per mL were multiplied by the total volume in which the organ was homogenized (0.3 mL). The CFUs per organ were then log transformed. Please click here to view a larger version of this figure.
The comprehensive protocol described here to study vaccine-induced immunity to B. pertussis infection will also permit evaluation of host responses to a variety of other pathogens. The protocol discusses methods to deliver immunizations, determine vaccine efficacy following pathogen challenge, and parallel dissection of immune function. In adapting the protocol in order to study other pathogens, several parameters would need to be modified. These include, but are not limited to, the mode of animal anesthesia, vaccine composition, dose, and route of administration. In addition, the dose and route of administration of the challenged pathogen of interest, selected tissue for harvest, and downstream evaluation of immune responses are factors that may be modified for the pathogen/disease of interest.
The mouse model of B. pertussis infection is widely used and is an excellent model for pathogenesis and vaccinology studies16,17,18,19,20. Murine models exhibit many similarities to human infection, including: i) bacteria are limited to the respiratory tract and multiply rapidly, ii) young animals display comparatively severe infections, iii) good correspondence between vaccines that protect children against pertussis and those that protect mice against infection, and iv) B. pertussis-specific T-cells and antibodies mediate natural and vaccine-induced protective immunity21,22,23,24. Therefore, the murine model permits the study of immunization effects on bacterial clearance25. Another advantage of using mice to model B. pertussis infections is the availability of genetically modified knockout and transgenic animals to study critical players in vaccine-induced immune responses19,26.
The majority of immunizations are administered parenterally, specifically via the intramuscular (i.m.) route. This route is preferred because it elicits systemic immunity with minimal local reactogenicity27,28,29. Alternatives to intramuscular injections include subcutaneous (s.c.) or intraperitoneal (i.p.) delivery, which also induce systemic responses. Subcutaneous routes are also attractive, as there is a large population of resident antigen presenting cells (APC) within the dermis with access to the vascular and lymphatic systems30. However, intradermal delivery has not been explored for the pertussis vaccine. Intraperitoneal delivery of experimental aPV generates similar immunity to intramuscular immunization31 and is a reliable injection route for murine studies, albeit impractical for clinical use.
This protocol utilizes the i.m. immunization route, which provides protection in the lungs, but not the nasopharynx32. Recent studies have shown that an intranasal (i.n.) vaccine promotes a local, mucosal immune response that protects the upper and lower respiratory tracts, particularly the nose, which serves as a reservoir of bacteria that may be subsequently transmitted to other hosts33. In addition, i.n. immunization has been shown to generate tissue resident memory that is not generated by systemic immunization33,34. Therefore, the choice of vaccine administration route depends greatly on the type of vaccine and immune response required to protect against disease.
The intranasal route of bacterial delivery described in this protocol is a widely used method for respiratory pathogens that safely and consistently delivers a bacterial inoculum directly into the respiratory tract of anesthetized mice. Our protocol uses a high-volume dose (40-50 µL) that is inhaled into the nasopharynx and travels into the lower respiratory tract. A low volume inoculum (10-20 µL) would colonize the nasopharynx, but colonization of the lungs will be minimal35. However, inhalation of B. pertussis-containing air droplets is considered the natural mode of infection of individuals and transmission. This route of administration has been used in various animal models36,37. To achieve comparable levels of infection to direct i.n. inoculation, considerably higher concentrations of the bacterial inoculum (109-1011 CFUs/mL) and delivery time are required38.
To establish colonization of mouse respiratory tract, this protocol uses fresh bacteria, grown in liquid culture to ensure that bacteria used for inoculation are in the virulent phase and are replicating in the log stage. Experimenters can also use an inoculum from pre-titrated, frozen stocks. This enables an knowledge of the CFUs being administered to the mouse. However, the bacteria in these inoculums may be in the non-virulent phase, which can reduce the efficiency of respiratory tract colonization39. After the infection, the inoculum is plated in order to determine the bacterial CFUs delivered to the mouse. Investigators may also choose to plate the inoculum prior to the in vivo infection to ensure viability of the bacteria and confirm dose of the inoculum.
After infection, bacterial CFUs are enumerated by homogenizing isolated tissue from sacrificed mice at a predetermined timepoint. A disadvantage to this method is its inability to kinetically track pathogen CFUs for a specified set of mice. Researchers must use multiple groups of animals sacrificed at different timepoints to examine vaccine-induced bacterial restriction. The number of mice in each experiment will vary depending on the number of timepoints to examine and the desired effect size. This may introduce increased biological variation. Integration of a bioluminescent or fluorescent reporter gene into the pathogen of interest will permit non-invasive monitoring of growth and dissemination in vivo throughout the course of infection35. This method reduces biological variation and minimizes the required number of experimental animals, since longitudinal data are obtained from the same group of animals.
The tissue dissociation and homogenization protocol employed here for respiratory tract tissues is also applicable for colony enumeration of other solid tissues such as liver, kidney, intestine, and/or bladder to interrogate sites of infection and dissemination of pathogens of interest.
Along with CFU enumeration, this protocol enables characterization of immune responses elicited by immunization and natural infection. Specifically, quantification of cytokines produced systemically and locally allow for the determination of efficacious immune profiles resulting from immunization. Cytokines are immunomodulators that promote cellular influx to affected tissues and activation of cellular immunity, as well as provide help for generation of humoral responses10,40,41. Using this protocol, cytokines produced in various tissue compartments, such as the lung and spleen, are detected. Although not shown here, the stimulation protocol is also applicable for evaluation of responses in the draining lymph nodes.
ELISA analysis allows detection and quantification of cytokines in media supernatants or mixed suspensions (i.e., homogenates or serum), yielding information at the population level and characterizing antigen-specific cytokine responses from a mixed cell culture at designated timepoints. In contrast, methods like ELISPOT or flow cytometry permit evaluation of the number of cells that produce an analyte and the level of expression per cell42,43. Although not described here, these methods are also applicable to detection of antigen-specific B cells. The combination of CFU enumeration and immunological assays provide complete picture of the response to immunization.
Other analyses that may be performed using this infection protocol include epigenetic or transcriptomic analysis when DNA and RNA is obtained from tissues of interest44. Thus, with consideration of the appropriate vaccine composition, immunization, and pathogen delivery route, this protocol is versatile in its implementation and easily suited for various models of infection. These techniques are also applicable to non-infectious diseases (i.e., cancer, multiple sclerosis, asthma, autoimmune diseases) where vaccines are used as a therapeutic modality.
The authors have nothing to disclose.
This work was supported by 1R01AI125560-01 and start-up funds from The Ohio State University.
2L induction chamber | Vet Equip | 941444 | |
Fluriso | Vet One | V1 501017 | any brand is appropriate |
Bordet Gengou Agar Base | BD bioscience | 248200 | |
Casein | Sigma | C-7078 | |
Casamino acids | VWR | J851-500G | Strainer Scholte (SS) media components |
L-Glutamic acid | Research Products Int | G36020-500 | |
L-Proline | Research Products Int | P50200-500 | |
Sodium Chloride | Fisher | BP358-10 | |
Potassium Phosphate monobasic | Fisher | BP362-1 | |
Potassium Chloride | Fisher | P217-500 | |
Magnesium Chloride hexahydrate | Fisher | M2670-500G | |
Calcium Chloride | Fisher | C75-500 | |
Tris base | Fisher | BP153-1 | |
L-cysteine HCl | Fisher | BP376-100 | SS media suplements |
Ferrous Sulfate heptahydrate | Sigma | F-7002 | |
Niacin | Research Products Int | N20080-100 | |
Glutathione | Research Products Int | G22010-25 | |
Ascorbic acid | Research Products Int | A50040-500 | |
RPMI 1640 | ThermoFisher Scientific | 11875093 | |
FBS | Sigma | F2442-500mL | any US source, non-heat inactivated |
gentamicin | ThermoFisher Scientific | 15710064 | |
B-mercaptoethanol | Fisher | BP176-100 | |
15mL dounce tissue grinder | Wheaton | 357544 | any similar brand is appropriate |
Cordless Hand Homogenizer | Kontes/Sigma | Z359971-1EA | any similar brand is appropriate |
Instruments – scissors, curve scissors, forceps, fine forceps, triangle spreaders | any brand is appropriate | ||
3mL syringes | BD bioscience | 309657 | |
15mL conical tubes | Fisher | 339651 | |
1.5mL microfuge tubes | Denville | C2170 | |
70um cell strainers | Fisher | 22363548 | |
60mm plates | ThermoFisher Scientific | 130181 | |
48-well tissue culture plates | ThermoFisher Scientific | 08-772-1C | |
1mL insulin syringe 28G1/2 | Fisher Scientific/Excel Int. | 14-841-31 | |
Mouse IFN-gamma ELISA Ready-SET-Go! Kit | Invitrogen / eBioscience | 50-173-21 | |
Mouse IL-17 ELISA Ready-SET-Go! Kit | Invitrogen / eBioscience | 50-173-77 | |
Mouse IL-5 ELISA Ready-SET-Go! Kit | Invitrogen / eBioscience | 50-172-09 |