Nach der Überprüfung durch Blut-Sauerstoff-Niveau-abhängigen funktionelle Magnetresonanztomographie (BOLD fMRT), die der entsprechenden somatosensorischen Fass Feld Kortex Bereich (genannt S1BF) korrekt aktiviert, die wichtigsten Ziel dieser Studie ist es, Laktat Inhalt zu quantifizieren Schwankungen in den aktivierten Ratte Gehirnen von lokalisierten Proton Magnetische Resonanzspektroskopie (1H-MRS) bei 7 T.
Kernresonanzspektroskopie (NMR) bietet die Möglichkeit, zerebrale Metabolit Inhalt in Vivo zu messen und nicht-invasiv. Dank der technologischen Entwicklungen des letzten Jahrzehnts und die Erhöhung der Magnetfeldstärke ist es jetzt möglich, gute Auflösung Spektren in Vivo in der Rattengehirn zu erhalten. Neuroenergetics (d.h. das Studium der Stoffwechsel im Gehirn) und vor allem, metabolische Interaktionen zwischen den verschiedenen Zelltypen haben immer mehr Interesse in den letzten Jahren angezogen. Unter dieser metabolischen Wechselwirkungen ist die Existenz eines Laktat-Shuttle zwischen Neuronen und Astrozyten noch umstritten. Es ist daher von großem Interesse für funktionale Proton Magnetische Resonanzspektroskopie (1H-Frau) in einem Rattenmodell des Gehirns Aktivierung und Monitor Laktat durchführen. Jedoch die Methyl-Laktat-Spitze überlappt Lipid Resonanz Gipfeln und ist schwer zu quantifizieren. Die nachfolgend beschriebene Protokoll ermöglicht metabolische und Laktat-Schwankungen in einem aktivierten Hirnareal überwacht werden. Zerebrale Aktivierung erhält man durch Whisker Stimulation und 1H-MRS erfolgt in der entsprechenden aktivierten Fass Kortex, deren Gebiet mit Blut-Sauerstoff-Niveau-abhängigen funktionelle Magnetresonanztomographie (fMRT Fett) nachgewiesen ist. Alle Schritte sind ausführlich beschrieben: die Wahl von Anästhetika, Spulen und Sequenzen, effiziente Whisker Stimulation direkt in den Magneten und Datenverarbeitung zu erreichen.
Das Gehirn besitzt innere Mechanismen, mit denen die Regulierung von seinem großen Substrat (d.h., Glukose), sowohl für ihren Beitrag und dessen Nutzung, je nach Variationen in lokalen zerebralen Aktivität. Obwohl Glukose die wichtigsten Energie-Substrat für das Gehirn ist, haben in den letzten Jahren durchgeführten Experimente gezeigt, dass Laktat, die von den Astrozyten produziert wird, könnte eine effiziente Energie-Substrat für die Neuronen. Dies wirft die Hypothese eines Laktat-Shuttle zwischen Astrozyten und Neuronen1. Bekannt als ANLS, für Astrozyten-Neuron Laktat Shuttle2, die Theorie ist immer noch sehr umstritten, aber hat dazu geführt, den Vorschlag, dass Glukose, anstatt gehen direkt in Neuronen, gestattet die Astrocyten, wo es in verstoffwechselt wird Laktat, ein Stoffwechselprodukt, das ist , dann übertragen auf die Neuronen, die es als effiziente Energie-Substrat verwenden. Wenn solch ein Shuttle in Vivovorhanden ist, müsste es mehrere wichtige Konsequenzen für das Verständnis der grundlegenden Techniken in funktionelle zerebrale Bildgebung (Positronen-Emissions-Tomographie [PET]) und für die Entschlüsselung der Stoffwechselveränderungen beobachtet im Gehirn Pathologien.
Stoffwechsel im Gehirn zu studieren, und besonders, metabolische Interaktionen zwischen Neuronen und Astrozyten, vier Haupttechniken zur Verfügung (nicht einschließlich Mikro-/ Nanosensoren): Autoradiographie, PET, zwei-Photon fluoreszierende konfokalen Mikroskopie und Frau. Autoradiographie war eines der ersten Verfahren vorgeschlagen und liefert Bilder der regionalen Anhäufung von radioaktiven 14C-2-Deoxyglucose in Hirnschnitten, während PET Erträge in Vivo Bilder der regionalen Aufnahme von radioaktiven 18 F-Deoxyglucose. Beide haben den Nachteil der Verwendung von irradiative Molekülen beim produzieren niedrige räumliche Auflösung. Zwei-Photonen-Mikroskopie bietet zellulären Auflösung von fluoreszierenden Sonden, aber Lichtstreuung durch Gewebe begrenzt die bildgebende Tiefe. Diese drei Techniken haben früher, während Whisker Stimulation3,4,5,6Neuroenergetics bei Nagetieren zu studieren. In vivo MRS hat den doppelten Vorteil, nicht-invasive und nicht radioaktiven und jede Gehirnstruktur erkundet werden. Darüber hinaus kann MRS durchgeführt werden, während der neuronalen Aktivierung, eine Technik namens funktionale MRS (fMRS), die vor kurzem in Nagetieren7entwickelt wurde. Daher wird vorgeschlagen, ein Protokoll zum Stoffwechsel im Gehirn während der zerebralen Aktivität von 1H-Frau in Vivo und nicht-invasiv zu überwachen. Das Verfahren kann wird bei Erwachsenen gesunden Ratten mit Gehirn-Aktivierung erhalten durch einen Luftstoß Whisker Stimulation durchgeführt direkt in einen 7 T Magnetresonanz (MR) Imager beschrieben jedoch bei genetisch veränderten Tieren, sowie in einem pathologischen Zustand angepasst .
Der Lauf Kortex, auch als S1BF für die somatosensorischen Cortex oder Fass Feld ist eine Region innerhalb der kortikalen Schicht IV, die Cytochrom C Oxidase9Färbung beobachtet werden kann, und seiner Organisation ist bekannt, seit es weitgehend beschrieben 10,11. Ein Vibrissa ist mit einem Fass, verbunden in dem rund 19.000 Neuronen in einer Spalte12organisiert sind. Die Whisker-Fass Kortex Weg hat mehrere Vorteil…
The authors have nothing to disclose.
Diese Arbeit wurde durch den Zuschuss LabEx TRAIL unterstützt Referenz ANR-10-LABX-57 und eine Französisch-Schweizerische ANR-FNS gewähren Referenz ANR-15-CE37-0012. Die Autoren danken Aurélien Trotier für seine technische Unterstützung.
0.5 mL syringe with needle | Becton, Dickinson and Company, USA | 2020-10 | 0.33 mm (29 G) x 12.7 mm |
1H spectroscopy surface coil | Bruker, Ettlingen, Germany | T116344 | |
7T Bruker Biospec system | Bruker, Ettlingen, Germany | 70/20 USR | |
Arduino Uno based pulsing device | custom made | ||
Atipamezole | Vétoquinol, S.A., France | V8335602 | Antisedan, 4.28 mg |
Breathing mask | custom made | ||
Eye ointment | TVM laboratoire, France | 40365 | Ocry gel 10 g |
Induction chamber | custom made | 30x17x15 cm | |
Inlet flexible pipe | Gardena, Germany | 1348-20 | 4.6-mm diameter, 3m long |
Isoflurane pump, Model 100 series vaporizer, classic T3 | Surgivet, Harvard Apparatus | WWV90TT | from OH 43017, U.S.A |
Isoflurane, liquid for inhalation | Vertflurane, Virbac, France | QN01AB06 | 1000 mg/mL |
KD Scientific syringe pump | KD sientific, Holliston, USA | Legato 110 | |
LCModel software | LCModel Inc., Ontario, Canada | 6.2 | |
Medetomidine hydrochloride | Vétoquinol, S.A., France | QN05CM91 | Domitor, 1 mg/mL |
Micropore roll of adhesive plaster | 3M micropore, Minnesota, United States | MI912 | |
Micropore roll of adhesive plaster | 3M micropore, Minnesota, United States | MI925 | |
Monitoring system of physiologic parameter | SA Instruments, Inc, Stony Brook, NY, USA | Model 1025 | |
NaCl | Fresenius Kabi, Germany | B05XA03 | 0.9 % 250 mL |
Outlet flexible pipe | Gardena, Germany | 1348-20 | 4.6-mm diameter, 4m long |
Paravision software | Bruker, Ettlingen, Germany | 6.0.1 | |
Peripheral intravenous catheter | Terumo, Shibuya, Tokyo, Japon | SP500930S | 22 G x 1", 0.85×25 mm, 35 mL/min |
Rat head coil | Bruker, Ettlingen, Germany | ||
Sodic heparin, injectable solution | Choai, Sanofi, Paris, France | B01AB01 | 5000 IU/mL |
Solenoid control valves, plunger valve 2/2 way direct-acting | Burkert, Germany | 3099939 | Model type 6013 |
Terumo 2 ml syringe | Terumo, Shibuya, Tokyo, Japon | SY243 | with 21 g x 5/8" needle |
Terumo 5 mL syringe | Terumo, Shibuya, Tokyo, Japon | 05SE1 | |
Wistar RJ-Han rats | Janvier Laboratories, France |