Après avoir vérifié par sang-oxygène-dépendante du niveau fonctionnel de l’imagerie par résonance magnétique (IRMf BOLD) que la superficie correspondante de cortex champ de baril somatosensoriel (appelée S1BF) est bien activée, le principal objectif de cette étude est de quantifier la teneur en lactates fluctuations dans le cerveau de rat activés par spectroscopie de résonance magnétique de proton localisé (1H-MRS) à 7 T.
Spectroscopie de résonance magnétique nucléaire (RMN) offre la possibilité de mesurer le métabolite cérébral contenu in vivo et non invasive. Grâce aux développements technologiques au cours de la dernière décennie et l’augmentation de l’intensité du champ magnétique, il est maintenant possible d’obtenir bonne résolution spectres in vivo dans le cerveau de rat. Neuroenergetics (c’est-à-dire, l’étude du métabolisme cérébral) et, surtout, les interactions métaboliques entre les différents types de cellules ont suscité un intérêt de plus en plus ces dernières années. Parmi ces interactions métaboliques, l’existence d’une navette de lactate entre les neurones et les astrocytes est encore discutée. Il est, donc, d’un grand intérêt à effectuer la spectroscopie de résonance magnétique de proton fonctionnelle (1H-MRS) dans un modèle de rat de lactate de moniteur et d’activation cérébrale. Toutefois, le pic de lactate de méthyle chevauche les pointes de résonance des lipides et est difficile à quantifier. Le protocole décrit ci-dessous permet métabolique et les fluctuations à surveiller dans une zone du cerveau activées du lactate. Activation cérébrale est obtenue par la stimulation de la moustache et 1H-MRS est exécuté dans le cortex de baril activés correspondantes, dont la superficie est détectée à l’aide de l’oxygène-sang-dépendante du niveau fonctionnel résonance magnétique (IRMf BOLD). Toutes les étapes sont décrites en détail : le choix des anesthésiques, bobines et séquences, réaliser une stimulation efficace whisker directement dans l’aimant et le traitement des données.
Le cerveau possède des mécanismes intrinsèques qui permettent la régulation de son principal substrat (c.-à-d., glucose), tant pour sa contribution et son utilisation, selon les variations de l’activité cérébrale locale. Bien que le glucose est le substrat de l’énergie principale pour le cerveau, les expériences réalisées ces dernières années ont montré que lactate, qui est produite par les astrocytes, pourrait être un substrat d’efficacité énergétique pour les neurones. Cela soulève l’hypothèse d’une navette de lactate entre les neurones et les astrocytes1. Connu comme ANLS, astrocyte-neurone lactate navette2, la théorie est encore très débattue mais a conduit à proposer ce glucose, plutôt que d’entrer directement dans les neurones, peut entrer les astrocytes, où il est métabolisé en lactate, un métabolite qui est , puis, transférée aux neurones, qui sert de substrat énergétique efficace. Si telle une navette existe en vivo, cela aurait plusieurs conséquences importantes, tant pour la compréhension des techniques de base en imagerie cérébrale fonctionnelle (tomographie par émission de positons [PET]) que pour déchiffrer les altérations métaboliques observées dans les pathologies cérébrales.
Pour étudier le métabolisme cérébral et, particulièrement, les interactions métaboliques entre les neurones et les astrocytes, les quatre principales techniques sont disponibles (non compris les micro / nano-capteurs) : autoradiographie, PET, microscopie confocal fluorescence biphotonique et Mme. Autoradiographie était l’une des premières méthodes proposées et fournit des images de l’accumulation régionale de radioactif 14C-2-désoxyglucose dans des tranches de cerveau, tout en PET rendements in vivo des images de la capture régionale de radioactifs 18 F-désoxyglucose. Les deux ont l’inconvénient de l’utilisation de molécules irradiative tout en produisant des images à résolution spatiale faible. Microscopie biphotonique offre une résolution cellulaire des sondes fluorescentes, mais la diffusion de la lumière par le tissu limite la profondeur d’imagerie. Ces trois techniques ont servi auparavant à étudier les neuroenergetics chez les rongeurs pendant whisker stimulation3,4,5,6. In vivo MRS a le double avantage d’être non invasive et non radioactif, et toute la structure du cerveau peut être explorée. En outre, MRS peut être effectuée au cours de l’activation neuronale, une technique appelée MRS fonctionnelle (rapports de gestion financière), qui a été développé très récemment dans les rongeurs7. Par conséquent, un protocole pour contrôler le métabolisme cérébral au cours de l’activité cérébrale par 1H-MRS in vivo et de façon non invasive est proposé. La procédure est décrite chez des rats adultes en bonne santé avec activation du cerveau obtenue par une stimulation de moustaches air-pouf effectuée directement dans un imageur par résonance magnétique (RM) de T à l’adresse 7 mais peut être adaptée chez les animaux génétiquement modifiés, ainsi que dans un état pathologique .
Le cortex de baril, également appelé S1BF pour le cortex somatosensoriel ou champ de canon, est une région au sein de la couche corticale IV que l’on peut observer à l’aide de la cytochrome c oxydase coloration9, et son organisation est bien connue car elle a été largement décrit 10,11. Un vibrissa est connecté à un tonneau, dans lequel environ 19 000 neurones sont organisés en une colonne12. La voie de …
The authors have nothing to disclose.
Ce travail a été soutenu par l’octroi de LabEx TRAIL, référence ANR-10-LABX-57 et un Français-Swiss ANR-FNS accorde référence ANR-15-CE37-0012. Les auteurs remercient Aurélien Trotier pour son soutien technique.
0.5 mL syringe with needle | Becton, Dickinson and Company, USA | 2020-10 | 0.33 mm (29 G) x 12.7 mm |
1H spectroscopy surface coil | Bruker, Ettlingen, Germany | T116344 | |
7T Bruker Biospec system | Bruker, Ettlingen, Germany | 70/20 USR | |
Arduino Uno based pulsing device | custom made | ||
Atipamezole | Vétoquinol, S.A., France | V8335602 | Antisedan, 4.28 mg |
Breathing mask | custom made | ||
Eye ointment | TVM laboratoire, France | 40365 | Ocry gel 10 g |
Induction chamber | custom made | 30x17x15 cm | |
Inlet flexible pipe | Gardena, Germany | 1348-20 | 4.6-mm diameter, 3m long |
Isoflurane pump, Model 100 series vaporizer, classic T3 | Surgivet, Harvard Apparatus | WWV90TT | from OH 43017, U.S.A |
Isoflurane, liquid for inhalation | Vertflurane, Virbac, France | QN01AB06 | 1000 mg/mL |
KD Scientific syringe pump | KD sientific, Holliston, USA | Legato 110 | |
LCModel software | LCModel Inc., Ontario, Canada | 6.2 | |
Medetomidine hydrochloride | Vétoquinol, S.A., France | QN05CM91 | Domitor, 1 mg/mL |
Micropore roll of adhesive plaster | 3M micropore, Minnesota, United States | MI912 | |
Micropore roll of adhesive plaster | 3M micropore, Minnesota, United States | MI925 | |
Monitoring system of physiologic parameter | SA Instruments, Inc, Stony Brook, NY, USA | Model 1025 | |
NaCl | Fresenius Kabi, Germany | B05XA03 | 0.9 % 250 mL |
Outlet flexible pipe | Gardena, Germany | 1348-20 | 4.6-mm diameter, 4m long |
Paravision software | Bruker, Ettlingen, Germany | 6.0.1 | |
Peripheral intravenous catheter | Terumo, Shibuya, Tokyo, Japon | SP500930S | 22 G x 1", 0.85×25 mm, 35 mL/min |
Rat head coil | Bruker, Ettlingen, Germany | ||
Sodic heparin, injectable solution | Choai, Sanofi, Paris, France | B01AB01 | 5000 IU/mL |
Solenoid control valves, plunger valve 2/2 way direct-acting | Burkert, Germany | 3099939 | Model type 6013 |
Terumo 2 ml syringe | Terumo, Shibuya, Tokyo, Japon | SY243 | with 21 g x 5/8" needle |
Terumo 5 mL syringe | Terumo, Shibuya, Tokyo, Japon | 05SE1 | |
Wistar RJ-Han rats | Janvier Laboratories, France |