Summary

硅上半圆柱空隙锗外延层位错还原的理论计算和实验验证

Published: July 17, 2020
doi:

Summary

提出了降低硅上半圆柱空隙的锗外延层螺纹位错(TD)密度的理论计算和实验验证。给出了基于TD与表面相互作用的计算方法,通过像力、TD测量和透射电子显微镜对TD的观测。

Abstract

降低硅(Si)上外延锗(Ge)的螺纹位错密度(TDD)是实现单片集成光子电路的最重要挑战之一。本文介绍了一种降低TDD的新模型的理论计算和实验验证方法。理论计算方法描述了基于TDs与选择性外延生长(SEG)的非平面生长表面在位错成像力方面的相互作用的螺纹位错(TDs)的弯曲。计算表明,SiO2 掩模上空隙的存在有助于降低TDD。采用超高真空化学气相沉积法和TD观察生长的锗(Ge)SEG通过蚀刻和横截面透射电子显微镜(TEM)对生长的Ge进行实验验证。强烈建议TDD降低是由于SiO2 SEG掩模和生长温度上存在半圆柱形空隙。为了进行实验验证,由于Ge层的SEG及其聚结作用,形成了具有半圆柱形空隙的外延Ge层。实验得到的TDDs基于理论模型再现了计算出的TDD。横断面透射电镜观察表明,TD的终止和生成都发生在半圆柱形空隙处。平面透射电镜观测揭示了具有半圆柱形空隙的Ge中TD的独特行为(即TD弯曲以平行于SEG掩模和Si衬底)。

Introduction

Si上的外延锗作为有源光子器件平台引起了广泛兴趣,因为Ge可以检测/发射光通信范围(1.3-1.6μm)内的光,并且与Si CMOS(互补金属氧化物半导体)加工技术兼容。然而,由于Ge和Si之间的晶格失配高达4.2%,因此在Si上的Ge外延层中以~109 / cm2的密度形成螺纹位错(TDs)。由于TD在Ge光电探测器(PD)和调制器(MOD)中充当载流子生成中心,在激光二极管(LDs)中充当载流子复合中心,因此锗光子器件的性能会因TD而恶化。反过来,它们会增加PD和MOD123中的反向泄漏电流(J泄漏)和LDs456中的阈值电流(J th)。

据报道,已经有各种尝试来降低Si上Ge中的TD密度(TDD)(补充图1)。热退火刺激TD的运动,导致TDD降低,通常为2 x 107 / cm2。缺点是Si和Ge可能混合,并且掺杂剂在Ge中扩散,例如磷789补充图1a)。SiGe分级缓冲层101112增加了临界厚度并抑制了TD的产生,导致TDD降低通常为2 x 106/cm2这里的缺点是厚缓冲器会降低Ge器件和下方Si波导之间的光耦合效率(补充图1b)。纵横比捕获 (ART)13,14,15 是一种选择性外延生长 (SEG) 方法,通过将 TD 捕获在厚 SiO 2 沟槽的侧壁上来降低 TD通常为 <1 x 10 6/cm 2ART方法使用较厚的SiO 2掩模来降低Ge中的TDD,而不是SiO 2掩模,SiO2掩模远高于Si,并且具有相同的缺点(补充图1b1c)。Si柱晶种上的Ge生长和退火161718与ART方法相似通过高纵横比Ge生长使TD捕获达到<1 x 105/cm2然而,用于Ge聚结的高温退火在补充图1a-c补充图1d)中具有相同的缺点。

为了在硅上实现低TDD的Ge外延生长,而不受上述方法的缺点,我们根据迄今为止在SEG Ge生长715,2122,23中报告的以下两个关键观察结果,提出了聚结诱导的TDD还原1920:1)TD弯曲成垂直于生长表面(通过横截面透射电子显微镜(TEM)观察),2)SEG Ge层的聚结导致在SiO2掩模上形成半圆柱形空隙。

我们假设TD由于生长表面的成像力而弯曲。在Si上的Ge的情况下,像像力分别在距离自由表面1 nm处产生1.38 GPa和1.86 GPa的螺杆位错和边缘位错的剪切应力19。计算出的剪切应力明显大于Ge24中报告的60°位错的Peierls应力0.5 GPa。该计算预测了Ge SEG层的TDD减少,并且与SEG Ge增长19非常吻合。对TD进行TEM观察以了解Si20上所呈现的SEG Ge生长中的TD行为。镜像力诱导的TDD还原没有任何热退火或厚缓冲层,因此更适合光子器件应用。

本文介绍了TDD还原方法的理论计算和实验验证的具体方法。

Protocol

1. 理论计算程序 计算TD的轨迹。在计算中,假设 SEG 掩码足够薄,可以忽略 ART 对 TDD 减少的影响。确定生长表面并用方程表示。例如,使用时间演化参数 n = i、SEG Ge 高度 (h i) 和 SEG Ge 半径 (r i) 表示 SEG Ge 层圆形横截面的时间演变,如补充视频 1a 和等式 (1) 所示:<img alt="Equation 4" src="/files/ftp_upload/58897/58897eq4.jpg" style="opacity:…

Representative Results

理论计算 图3显示了6种聚结Ge层中TD的计算轨迹:在这里,我们将孔径比(APR)定义为W窗口/(W窗口+ W掩模)。图3a显示了APR = 0.8的圆形SEG原点聚结Ge。在这里,2/6 TD 被困住。图3b显示了APR = 0.8的{113}面SEG原点聚结Ge。在这里?…

Discussion

在本工作中,实验显示了4 x 107 / cm2 的TDD。为了进一步降低TDD,协议中主要有2个关键步骤:SEG掩膜制备和外延Ge生长。

图4所示的模型表明,当APR,W窗口/(W窗口+ W掩模)小至0.1时,TDD可以降低到107 / cm2在聚结Ge中。为了进一步降低TDD,应准备具有较小APR的SEG口罩。如步骤2.1.2所述,W窗口?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本文部科学省(MEXT)的日本科学促进会(JSPS)KAKENHI(17J10044)的资助。制造工艺得到了日本文部科学省“纳米技术平台”(项目编号12024046)的支持。作者要感谢东京大学的K. Yamashita先生和平田S. Ms. Hirata女士在TEM观测方面的帮助。

Materials

AFM SII NanoTechnology SPI-3800N
BHF DAIKIN BHF-63U
CAD design AUTODESK AutoCAD 2013 Software
CH3COOH Kanto-Kagaku Acetic Acid for Electronics
CVD Canon ANELVA I-2100 SRE
Developer ZEON ZED
Developer rinse ZEON ZMD
EB writer ADVANTEST F5112+VD01
Furnace Koyo Thermo System KTF-050N-PA
HF, 0.5 % Kanto-Kagaku 0.5 % HF
HF, 50 % Kanto-Kagaku 50 % HF
HNO3, 61 % Kanto-Kagaku HNO3 1.38 for Electronics
I2 Kanto-Kagaku Iodine 100g
Photoresist ZEON ZEP520A
Photoresist remover Tokyo Ohka Hakuri-104
Surfactant Tokyo Ohka OAP
TEM JEOL JEM-2010HC

Riferimenti

  1. Giovane, L. M., Luan, H. C., Agarwal, A. M., Kimerling, L. C. Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers. Applied Physics Letters. 78 (4), 541-543 (2001).
  2. Wang, J., Lee, S. Ge-photodetectors for Si-based optoelectronic integration. Sensors. 11, 696-718 (2011).
  3. Ishikawa, Y., Saito, S. Ge-on-Si photonic devices for photonic-electronic integration on a Si platform. IEICE Electronics Express. 11 (24), 1-17 (2014).
  4. Cai, Y. . Materials science and design for germanium monolithic light source on silicon, Ph.D. dissertation. , (2009).
  5. Wada, K., Kimerling, L. C. . Photonics and Electronics with Germanium. , 294 (2015).
  6. Higashitarumizu, N., Ishikawa, Y. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: Impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers. Optics Express. 25 (18), 21286-21300 (2017).
  7. Luan, H. C., et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Applied Physics. Letters. 75 (19), 2909-2911 (1999).
  8. Nayfeha, A., Chui, C. O., Saraswat, K. C. Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality. Applied Physics Letters. 85 (14), 2815-2817 (2004).
  9. Choi, D., Ge, Y., Harris, J. S., Cagnon, J., Stemmer, S. Low surface roughness and threading dislocation density Ge growth on Si (001). Journal of Crystal Growth. 310 (18), 4273-4279 (2008).
  10. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., Fitzgerald, E. A. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters. 72 (14), 1718-1720 (1998).
  11. Liu, J. L., Tong, S., Luo, Y. H., Wan, J., Wang, K. L. High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers. Applied Physics Letters. 79 (21), 3431-3433 (2001).
  12. Yoon, T. S., Liu, J., Noori, A. M., Goorsky, M. S., Xie, Y. H. Surface roughness and dislocation distribution in compositionally graded relaxed SiGe buffer layer with inserted-strained Si layers. Applied Physics Letters. 87 (1), 012014 (2005).
  13. Langdo, T. A., Leitz, C. W., Currie, M. T., Fitzgerald, E. A., Lochtefeld, A., Antoniadis, D. A. High quality Ge on Si by epitaxial necking. Applied Physics Letters. 76 (25), 3700-3702 (2000).
  14. Park, J. S., Bai, J., Curtin, M., Adekore, B., Carroll, M., Lochtefeld, A. Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping. Applied Physics Letters. 90 (5), 052113 (2007).
  15. Fiorenza, J. G., et al. Aspect ratio trapping: A unique technology for integrating Ge and III-Vs with silicon CMOS. ECS Transactions. 33 (6), 963-976 (2010).
  16. Salvalaglio, M., et al. Engineered Coalescence by Annealing 3D Ge Microstructures into High-Quality Suspended Layers on Si. Applied Materials & Interfaces. 7 (34), 19219-19225 (2015).
  17. Bergamaschini, R., et al. Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays. Surface Science Reports. 68 (3), 390-417 (2013).
  18. Isa, F., et al. Highly Mismatched, Dislocation-Free SiGe/Si Heterostructures. Advanced Materials. 28 (5), 884-888 (2016).
  19. Yako, M., Ishikawa, Y., Wada, K. Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification. Journal of Applied Physics. 123 (18), 185304 (2018).
  20. Yako, M., Ishikawa, Y., Abe, E., Wada, K. Defects and Their Reduction in Ge Selective Epitaxy and Coalescence Layer on Si With Semicylindrical Voids on SiO2 Masks. IEEE Journal of Selected Topics in Quantum Electronics. 24 (6), 8201007 (2018).
  21. Park, J. S., Bai, J., Curtin, M., Carroll, M., Lochtefeld, A. Facet formation and lateral overgrowth of selective Ge epitaxy on SiO2-patterned Si(001) substrates. Journal of Vacuum Science & Technology B. 26 (1), 117-121 (2008).
  22. Bai, J., et al. Study of the defect elimination mechanisms in aspect ratio t.rapping Ge growth. Applied Physics Letters. 90 (10), 101902 (2007).
  23. Montalenti, F., et al. Dislocation-Free SiGe/Si Heterostructures. Crystals. 8 (6), 257 (2018).
  24. Zhang, H. L. Calculation of shuffle 60° dislocation width and Peierls barrier and stress for semiconductors silicon and germanium. European Physical Journal B. 81 (2), 179-183 (2011).
  25. Kim, M., Olubuyide, O. O., Yoon, J. U., Hoyt, J. L. Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications. ECS Transactions. 16 (10), 837-847 (2008).
  26. Yako, M., Kawai, N. J., Mizuno, Y., Wada, K. The kinetics of Ge lateral overgrowth on SiO2. Proceedings of MRS Fall Meeting. , (2015).
  27. Kamino, T., Yaguchi, T., Hashimoto, T., Ohnishi, T., Umemura, K. A FIB Micro-Sampling Technique and a Site Specific TEM Specimen Preparation Method. Introduction to Focused Ion Beams. , (2005).
  28. Park, J. S., et al. Low-defect-density Ge epitaxy on Si(001) using aspect ratio trapping and epitaxial lateral overgrowth. Electrochemical and Solid-State Letters. 12 (4), H142-H144 (2009).
  29. Li, Q., Jiang, Y. B., Xu, H., Hersee, S., Han, S. M. Heteroepitaxy of high-quality Ge on Si by nanoscale Ge seeds grown through a thin layer of SiO2. Applied Physics Letters. 85 (11), 1928-1930 (2004).
  30. Halbwax, M., et al. Epitaxial growth of Ge on a thin SiO2 layer by ultrahigh vacuum chemical vapor deposition. Journal of Crystal Growth. 308 (1), 26-29 (2007).
  31. Leonhardt, D., Ghosh, S., Han, S. M. Origin and removal of stacking faults in Ge islands nucleated on Si within nanoscale openings in SiO2. Journal of Applied Physics. 10 (7), 073516 (2011).
  32. Takada, Y., Osaka, J., Ishikawa, Y., Wada, K. Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post-Growth Annealing. Japanese Journal of Applied Physics. 49 (4S), 04DG23 (2010).
  33. Ishikawa, Y., Wada, K. Germanium for silicon photonics. Thin Solid Films. 518 (6), S83-S87 (2010).
  34. Nagatomo, S., Ishikawa, Y., Hoshino, S. Near-infrared laser annealing of Ge layers epitaxially grown on Si for high-performance photonic devices. Journal of Vacuum Science & Technology B. 35 (5), 051206 (2017).
  35. Ayers, J. E., Schowalter, L. J., Ghandhi, S. K. Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy. Journal of Crystal Growth. 125 (1), 329-335 (1992).
  36. Wang, G., et al. A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100). Applied Physics Letters. 94 (10), 102115 (2009).
  37. Leonhardt, D., Ghosh, S., Han, S. M. Defects in Ge epitaxy in trench patterned SiO2 on Si and Ge substrates. Journal of Crystal Growth. 335 (1), 62-65 (2011).
  38. Sammak, A., Boer, W. B., Nanver, L. K. Ge-on-Si: Single-crystal selective epitaxial growth in a CVD reactor. ECS Transactions. 50 (9), 507-512 (2012).
  39. Ishikawa, Y., Wada, K., Cannon, D. D., Liu, J., Luan, H. C., Kimerling, L. C. Strain-induced band gap shrinkage in Ge grown on Si substrate. Applied Physics Letters. 82 (13), 2044-2046 (2003).
  40. Bolkhovityanov, Y. B., Gutakovskii, A. K., Deryabin, A. S., Sokolov, L. V. Edge Misfit Dislocations in GexSi1–x/Si(001) (x~1) Heterostructures: Role of Buffer GeySi1–y (y < x) Interlayer in Their Formation. Physics of the Solid State. 53 (9), 1791-1797 (2011).
  41. Bourret, A. How to control the self-organization of nanoparticles by bonded thin layers. Surface Science. 432 (1), 37-53 (1999).
  42. Hirth, J. P., Lothe, J. Grain boundaries. Theory of Dislocations, 2nd ed. 19, 697-750 (1982).
  43. Mizuno, Y., Yako, M., Luan, N. M., Wada, K. Strain tuning of Ge bandgap by selective epigrowth for electro-absorption modulators. Proceedings of SPIE Photonics West, San Francisco, CA, USA. 9367, 1-6 (2015).
  44. Nam, J. H., et al. Lateral overgrowth of germanium for monolithic integration of germanium-on-insulator on silicon. Journal of Crystal Growth. 416 (15), 21-27 (2015).
  45. Fitch, J. T. Selectivity Mechanisms in Low Pressure Selective Epitaxial Silicon Growth. Journal of The Electrochemical Society. 141 (4), 1046-1055 (1994).
  46. Ye, H., Yu, J. Germanium epitaxy on silicon. Science and Technology of Advanced Materials. 15 (2), 1-9 (2014).

Play Video

Citazione di questo articolo
Yako, M., Ishikawa, Y., Abe, E., Wada, K. Theoretical Calculation and Experimental Verification for Dislocation Reduction in Germanium Epitaxial Layers with Semicylindrical Voids on Silicon. J. Vis. Exp. (161), e58897, doi:10.3791/58897 (2020).

View Video