Le calcul théorique et la vérification expérimentale sont proposés pour une réduction de la densité de dislocation du filetage (TD) dans les couches épitaxiales de germanium avec des vides semi-cylindriques sur silicium. Les calculs basés sur l’interaction des TD et de la surface via la force d’image, les mesures TD et les observations de TD au microscope électronique à transmission sont présentés.
La réduction de la densité de dislocation du filetage (TDD) dans le germanium épitaxial (Ge) sur silicium (Si) a été l’un des défis les plus importants pour la réalisation de circuits photoniques intégrés monolithiquement. Le présent document décrit les méthodes de calcul théorique et de vérification expérimentale d’un nouveau modèle de réduction du TDD. La méthode de calcul théorique décrit la flexion des dislocations de filetage (TD) basée sur l’interaction des TD et des surfaces de croissance non planaires de croissance épitaxiale sélective (SEG) en termes de force d’image de dislocation. Le calcul révèle que la présence de vides sur les masques SiO2 aide à réduire les TDD. La vérification expérimentale est décrite par le germanium (Ge) SEG, à l’aide d’une méthode de dépôt chimique en phase vapeur sous ultravide et d’observations TD du Ge cultivé par gravure et microscope électronique à transmission transversale (MET). Il est fortement suggéré que la réduction du TDD serait due à la présence de vides semi-cylindriques sur les masques SEG SiO2 et à la température de croissance. Pour la vérification expérimentale, des couches épitaxiales de Ge avec des vides semi-cylindriques sont formées à la suite du SEG des couches de Ge et de leur coalescence. Les TDD obtenus expérimentalement reproduisent les TDD calculés sur la base du modèle théorique. Les observations transversales de la TEM révèlent que la terminaison et la génération de TD se produisent à des vides semi-cylindriques. Les observations de TEM en plan révèlent un comportement unique des TD dans Ge avec des vides semi-cylindriques (c’est-à-dire que les TD sont pliés pour être parallèles aux masques SEG et au substrat Si).
Epitaxial Ge on Si a suscité un intérêt substantiel en tant que plate-forme de dispositifs photoniques actifs puisque Ge peut détecter / émettre de la lumière dans la gamme de communication optique (1,3-1,6 μm) et est compatible avec les techniques de traitement CMOS (semi-conducteur à oxyde métallique complémentaire). Cependant, comme l’inadéquation du réseau entre Ge et Si est aussi grande que 4,2%, des dislocations de filetage (TD) se forment dans les couches épitaxiales Ge sur Si à une densité de ~109/cm2. Les performances des dispositifs photoniques Ge sont détériorées par les TD parce que les TD fonctionnent comme des centres de génération de porteurs dans les photodétecteurs Ge () et les modulateurs (MOD), et comme des centres de recombinaison de porteuses dans les diodes laser (LD). À leur tour, ils augmenteraient le courant de fuite inverse (fuite J) dans les et les MOD 1,2,3, et le courant de seuil (Jth) dans les LD 4,5,6.
Diverses tentatives ont été signalées pour réduire la densité de TD (TDD) dans Ge on Si (figure supplémentaire 1). Le recuit thermique stimule le mouvement des TD conduisant à la réduction de TDD, généralement à 2 x 107/cm2. L’inconvénient est le mélange possible de Si et de Ge et la diffusion de dopants dans Ge tels que le phosphore 7,8,9 (figure supplémentaire 1a). La couche tampon graduée SiGe 10,11,12 augmente les épaisseurs critiques et supprime la génération de TD conduisant à la réduction des TDD, généralement à 2 x 10 6/cm2. L’inconvénient ici est que le tampon épais réduit l’efficacité du couplage de lumière entre les dispositifs Ge et les guides d’ondes Si en dessous (Figure supplémentaire 1b). Le piégeage au format d’image (ART)13,14,15 est une méthode de croissance épitaxiale sélective (SEG) qui réduit les DT en piégeant les TD sur les parois latérales des tranchées épaisses de SiO 2, généralement à <1 x 10 6/cm 2. La méthode ART utilise un masque SiO 2 épais pour réduire le TDD dans Ge par rapport aux masques SiO2, qui se situe bien au-dessus du Si et présente le même inconvénient (Figure supplémentaire 1b,1c). La croissance de Ge sur les graines du pilier Si et le recuit 16,17,18 sont similaires à la méthode ART, permettant le piégeage TD par rapport d’aspect élevé Croissance Ge, à <1 x 10 5/cm2. Cependant, le recuit à haute température pour la coalescence Ge présente les mêmes inconvénients dans la figure supplémentaire 1a-c (figure supplémentaire 1d).
Pour obtenir une croissance épitaxiale Ge TDD faible sur Si qui est exempte des inconvénients des méthodes mentionnées ci-dessus, nous avons proposé une réduction TDD induite par coalescence 19,20 sur la base des deux observations clés suivantes rapportées jusqu’à présent dans la croissance SEG Ge 7,15,21,22,23 : 1) les TD sont pliés pour être perpendiculaires aux surfaces de croissance (observés par le microscope électronique à transmission transversale (MET)), et 2) la coalescence des couches de SEG Ge entraîne la formation de vides semi-cylindriques sur les masques SiO2.
Nous avons supposé que les TD sont pliés en raison de la force d’image de la surface de croissance. Dans le cas de Ge sur Si, la force d’image génère des contraintes de cisaillement de 1,38 GPa et 1,86 GPa pour les dislocations de vis et les luxations de bord à des distances de 1 nm des surfaces libres, respectivement19. Les contraintes de cisaillement calculées sont significativement plus grandes que la contrainte de Peierls de 0,5 GPa rapportée pour des dislocations de 60° dans Ge24. Le calcul prévoit la réduction TDD des couches de GES SEG sur une base quantitative et est en bon accord avec la croissance du SEG Ge19. Les observations TEM des TD sont effectuées pour comprendre les comportements de la TD dans la croissance SEG Ge présentée sur Si20. La réduction TDD induite par la force d’image est exempte de tout recuit thermique ou couche tampon épaisse, et est donc plus adaptée à l’application de dispositifs photoniques.
Dans cet article, nous décrivons des méthodes spécifiques pour le calcul théorique et la vérification expérimentale utilisés dans la méthode de réduction TDD proposée.
Dans le présent travail, des TDD de 4 x 107/cm2 ont été montrés expérimentalement. Pour une réduction supplémentaire du TDD, il y a principalement 2 étapes critiques dans le protocole: la préparation du masque SEG et la croissance épitaxiale de GE.
Notre modèle illustré à la figure 4 indique que le TDD peut être réduit en dessous de 107/cm2 dans le Ge coalescé lorsque le TAEG, Wfenêtre/(W…
The authors have nothing to disclose.
Ce travail a été soutenu financièrement par la Société japonaise pour la promotion de la science (JSPS) KAKENHI (17J10044) du ministère de l’Éducation, de la Culture, des Sports, de la Science et de la Technologie (MEXT), Japon. Les procédés de fabrication ont été soutenus par « Nanotechnology Platform » (projet n° 12024046), MEXT, Japon. Les auteurs tiennent à remercier M. K. Yamashita et Mme S. Hirata, de l’Université de Tokyo, de leur aide concernant les observations TEM.
AFM | SII NanoTechnology | SPI-3800N | |
BHF | DAIKIN | BHF-63U | |
CAD design | AUTODESK | AutoCAD 2013 | Software |
CH3COOH | Kanto-Kagaku | Acetic Acid | for Electronics |
CVD | Canon ANELVA | I-2100 SRE | |
Developer | ZEON | ZED | |
Developer rinse | ZEON | ZMD | |
EB writer | ADVANTEST | F5112+VD01 | |
Furnace | Koyo Thermo System | KTF-050N-PA | |
HF, 0.5 % | Kanto-Kagaku | 0.5 % HF | |
HF, 50 % | Kanto-Kagaku | 50 % HF | |
HNO3, 61 % | Kanto-Kagaku | HNO3 1.38 | for Electronics |
I2 | Kanto-Kagaku | Iodine 100g | |
Photoresist | ZEON | ZEP520A | |
Photoresist remover | Tokyo Ohka | Hakuri-104 | |
Surfactant | Tokyo Ohka | OAP | |
TEM | JEOL | JEM-2010HC |